The 5P P untranslated region of hepatitis C virus RNA forms an extensive secondary structure including several hairpin motifs and mediates translation initiation by an internal ribosome entry site-dependent pathway. We report, here, an extensive mutagenesis analysis of a highly conserved tetraloop in the 5P P untranslated region of hepatitis C virus, namely hairpin IIIe (295P P-GAUA-298P P). Our results demonstrate that hairpin IIIe is essential for the internal ribosome entry site function. Moreover, they indicate the importance of the primary structure of this motif because mutations in all four nucleotides of the loop caused a severe loss of internal ribosome entry site activity. These data represent the first experimental evidence for the functional significance of tetraloops in internal ribosome entry site-driven translation of hepatitis C virus.z 1999 Federation of European Biochemical Societies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.