Surface acoustic wave (SAW) radio transponders make it possible to read identification codes or measurement values from a remote location. The decisive advantage of these SAW transponders lies in their passive operation (i.e., no power-supply), and in the possibility of wireless installation at particularly inaccessible locations. The passive SAW transponders are maintenance free. Identification marks respond to an interrogation signal with their nonchanging identification pattern. In wireless SAW sensors the physical or chemical properties to be detected change the propagation characteristics of the SAW. SAW radio transponders are advantageously placed on moving or rotating parts and in hazardous environments such as contaminated or high voltage areas. They also can be used for contactless measurements in high vacuum process chambers, under concrete, extreme heat, or strong radioactive radiation, where the use of conventional sensors is complicated, dangerous, or expensive. In this paper we discuss the principles of wireless passive SAW transponders and present a radio frequency interrogation unit and several passive radio SAW sensors developed for noncontact measurements of temperatures, pressures, torques, and currents.
SAW tags were invented more than 30 years ago, but only today are the conditions united for mass application of this technology. The devices in the 2.4-GHz ISM band can be routinely produced with optical lithography, high-resolution radar systems can be built up using highly sophisticated, but low-cost RF-chips, and the Internet is available for global access to the tag databases. The "Internet of Things," or I-o-T, will demand trillions of cheap tags and sensors. The SAW tags can overcome semiconductor-based analogs in many aspects: they can be read at a distance of a few meters with readers radiating power levels 2 to 3 orders lower, they are cheap, and they can operate in robust environments. Passive SAW tags are easily combined with sensors. Even the "anti-collision" problem (i.e., the simultaneous reading of many nearby tags) has adequate solutions for many practical applications. In this paper, we discuss the state-of-the-art in the development of SAW tags. The design approaches will be reviewed and optimal tag designs, as well as encoding methods, will be demonstrated. We discuss ways to reduce the size and cost of these devices. A few practical examples of tags using a time-position coding with 10(6) different codes will be demonstrated. Phase-coded devices can additionally increase the number of codes at the expense of a reduction of reading distance. We also discuss new and exciting perspectives of using ultra wide band (UWB) technology for SAW-tag systems. The wide frequency band available for this standard provides a great opportunity for SAW tags to be radically reduced in size to about 1 x 1 mm(2) while keeping a practically infinite number of possible different codes. Finally, the reader technology will be discussed, as well as detailed comparison made between SAW tags and IC-based semiconductor device.
Ahtmct-We report on the use of broadband chirp s i p nals for spread spectrum systems in indoor applications. The presented system concepts make use of chirp transmission and pulse compression. Different modulation schemes for chirp signals resulting in different system performance and complexity are compared in terms of bit error rate for the AWGN channel and for frequency selective indoor radio channels. We present simulations and measurement results from demonstrator systems which use surface acoustic waveSAW) devices for the generation and matched Altering of the chirp signals. RF and IF frequency and transmission bandwidth of the presented systems are 2.4 GHz, 348.8 MHa, and 80 MHz, respectively. Due to the processing gain of 16 dB -made possible by the use of SAW devices -and the large transmission bandwidth the system is insensitive against frequency selective fading, CW interference and noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.