Cork oak (Quercus suber) is native to southwest Europe and northwest Africa where it plays a crucial environmental and economical role. To tackle the cork oak production and industrial challenges, advanced research is imperative but dependent on the availability of a sequenced genome. To address this, we produced the first draft version of the cork oak genome. We followed a de novo assembly strategy based on high-throughput sequence data, which generated a draft genome comprising 23,347 scaffolds and 953.3 Mb in size. A total of 79,752 genes and 83,814 transcripts were predicted, including 33,658 high-confidence genes. An InterPro signature assignment was detected for 69,218 transcripts, which represented 82.6% of the total. Validation studies demonstrated the genome assembly and annotation completeness and highlighted the usefulness of the draft genome for read mapping of high-throughput sequence data generated using different protocols. All data generated is available through the public databases where it was deposited, being therefore ready to use by the academic and industry communities working on cork oak and/or related species.
Sweet taste plays a critical role in determining food preferences and choices. Similar to what happens for other oral sensations, individuals differ in their sensitivity for sweet taste and these inter-individual differences may be responsible for variations in food acceptance. Despite evidence that saliva plays a role in taste perception, this fluid has been mainly studied in the context of bitterness or astringency. We investigated the possible relationship between sweet taste sensitivity and salivary composition in subjects with different sucrose detection thresholds. Saliva collected from 159 young adults was evaluated for pH, total protein concentration and glucose. One-and bi-dimensional electrophoresis (2-DE) were performed and protein profiles compared between sweet sensitivity groups, with proteins that were differently expressed being identified by MALDI-FTICR-MS. Moreover, Western blotting was performed for salivary carbonic anhydrase VI (CA-VI) and cystatins and salivary amylase enzymatic activity was assessed in order to compare groups. Females with low sensitivity to sweet taste had higher salivary concentrations of glucose compared to those with sensitivity. For protein profiles, some differences were sex-dependent, with higher levels of α-amylase and CA-VI in lowsensitivity individuals and higher levels of cystatins in sensitive ones for both sexes. Body mass index was not observed to affect the association between salivary proteome and taste sensitivity. To our knowledge, these are the first data showing an association between sweet taste and saliva proteome.
ARTICLE HISTORY
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.