The regulation of plasmin generation on cell surfaces is of critical importance in the control of vascular homeostasis. Cellderived microparticles participate in the dissemination of biological activities. However, their capacity to promote plasmin generation has not been documented. In this study, we show that endothelial microparticles (EMPs) from tumor necrosis factor ␣ (TNF␣) - IntroductionMicroparticles (MPs) are vesicles resulting from the blebbing of the cellular membrane of most activated or apoptotic cells. 1 These microvesicles have been described in various cellular models and in different pathological conditions as reliable hallmarks of cell damage. 2 Because they convey various bioactive effectors originating from the parent cells, MPs may exhibit a spectrum of biological activities: they regulate endothelial or blood cell functions, participate in inflammatory responses or angiogenesis, and propagate biological responses involved in hemostatic balance. 3 We previously reported the capacity of endothelial cells to release microparticles after inflammatory stimulation and the presence of increased levels of circulating endothelial microparticles (EMPs) in patients with thrombotic disorders. 4 Since this initial report, elevated levels of EMPs have been documented in various pathological conditions including coronary syndromes, 5 renal failure, 6 diabetes, 7 antiphospholipid syndrome, 8 thrombotic thrombocytopenic purpura, 9 and sickle cell disease, 10 in which they reflect endothelial dysfunction and are associated with a poor clinical outcome.EMPs provide procoagulant phospholipid surfaces for the assembly and activation of coagulation factors, mainly through phosphatidylserine translocation to the exoplasmic leaflet as a result of membrane remodeling. Their involvement in thrombin generation also results from their capacity to harbor, deliver, or induce tissue factor activity. 11-13 However, a more complex contribution to the hemostatic balance is suggested by their expression of thrombomodulin, tissue factor pathway inhibitor, and endothelial protein C receptor, thus providing a possible antithrombotic counterbalance. 14,15 Another key regulator of the vascular homeostasis is the plasminogen activation system. Plasminogen activation is mediated by 2 serine proteases: tissue-type plasminogen activator (tPA), which is mainly implicated in fibrinolysis, and urokinase-type plasminogen activator (uPA), which is critically involved in pericellular proteolysis due to its high affinity cell-surface receptor uPAR. 16 Plasmin generation induced by uPA and subsequent activation of matrix metalloproteinases (MMPs) promote cell migration through interstitial matrix and participate in processes such as tissue remodeling, cancer invasion, and angiogenesis. [17][18][19] Importantly, we have shown that uncontrolled plasminogen activation can have deleterious consequences by inducing cell detachment and apoptosis. 20,21 The regulation of plasmin generation at the endothelial surface is therefore of critical importa...
In this report, updated information and future perspectives about the use of saliva as a sample for laboratory analysis of the Covid-19 are highlighted. Saliva can be used for the direct detection of the SARS-CoV-2 virus, the quantification of the specific immunoglobulins produced against it, and for the evaluation of the non-specific, innate immune response of the patient. Moreover, a deeper knowledge of potential changes in the saliva proteome in this disease may allow the identification of new diagnostic and prognostic biomarkers, or even help our understanding of the mechanisms associated with the disease. With the development of appropriate sample collection and processing methods and the use of adequate assays, saliva can provide useful clinical information about the disease and could be potentially included in guidelines for sample collection for the diagnosis, disease management, and control of Covid-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.