Increased amounts of reactive oxygen species (ROS) during in vitro fertilization (IVF) may cause cytotoxic damage to gametes, whereas small amounts of ROS favour sperm capacitation. The aim of this study was to investigate the effect of antioxidants [50 microm beta-mercaptoethanol (beta-ME) and 50 microm cysteamine (Cyst)] or a pro-oxidant (5 mm buthionine sulfoximine) on the quality and penetrability of spermatozoa into bovine oocytes and on the subsequent embryo development and quality when added during IVF. Sperm quality, evaluated by the integrity of plasma and acrosomal membranes, and mitochondrial function, was diminished (p < 0.05) after 4-h culture in the presence of antioxidants. Oocyte penetration rates were similar between treatments (p > 0.05), but antioxidants adversely affected the normal pronuclear formation rates (p < 0.05). The incidence of polyspermy was high for beta-ME (p < 0.05). No differences were observed in cleavage rates between treatments (p > 0.05). However, the developmental rate to the blastocyst stage was adversely affected by Cyst treatment (p < 0.05). The quality of embryos that reached the blastocyst stage, evaluated by total, inner cell mass (ICM) and trophectoderm cell numbers and ICM/total cell ratio was unaffected (p > 0.05) by treatments. The results indicate that ROS play a role in the fertilizing capacity in bovine spermatozoa, as well as in the interaction between the spermatozoa and the oocytes. It can be concluded that supplementation with antioxidants during IVF procedures impairs sperm quality, normal pronuclear formation and embryo development to the blastocyst stage.
Aiming to standardize in vitro production of bovine embryos and to obtain supplements to replace serum in culture media, this study evaluated the nuclear maturation kinetics and embryonic development in bovine after in vitro maturation (IVM) and culture (IVC) with several macromolecules (animal origin: bovine serum albumin (BSA), fetal calf serum (FCS); synthetic: polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), Ficoll, and Knockout) at two oxygen tensions (20% and 5% O(2)). Regarding nuclear kinetics, neither the presence of the expected stage (metaphase I, transition anaphase to telophase, and metaphase II) at each evaluation moment (6, 18, and 24 h after IVM, respectively) nor the accelerated polar body emission (at 18 h after IVM) related developmental competence to blastocyst stage when different supplements were compared. Independently of supplement, cleavage rates at 20% O(2) (61.6-79.2%) were higher than at 5% O(2) (38.9-58.7%). At 20% O(2), higher blastocyst and hatching rates, respectively, were obtained in treatments BSA, FCS, Knockout, and control group (IVM with FCS and IVC with BSA + FCS, 14.0-23.5% and 6.8-15.4%) in comparison to PVA, PVP, and Ficoll (0%). The same was observed at 5% O(2) for blastocyst rates with BSA, FCS, Knockout, and control (5.4-16.8%) and for hatching rates with BSA, FCS, and control (2.0-11.1%). We can conclude that producing bovine embryos at 20% O(2) during the entire IVP process resulted in higher developmental rates than at 5% O(2). In addition, while defined macromolecules PVA, PVP, and Ficoll were not suitable for embryonic development, the synthetic serum Knockout was able to replace serum and albumin for IVP in bovine at 20% O(2).
SummaryAiming to improve in vitro production of bovine embryos and to obtain supplements to replace serum for in vitro maturation (IVM), this study evaluated the effects of macromolecular supplementation of IMV medium (bovine serum albumin -BSA, polyvinyl alcohol -PVA, polyvinyl pyrrolidone -PVP, Ficoll, KnockoutSR, or fetal calf serum -FCS) and oxygen tension [5% CO 2 in air (20% O 2 ) or 5% CO 2 , 5% O 2 and 90% N 2 (5% O 2 )] on oocyte maturation and embryo development. Nuclear progression to germinal vesicle breakdown, metaphase I and metaphase II stages were evaluated and overall results revealed that undefined (FCS) and semi-defined (BSA) media gave better results at 20% O 2 and defined media (PVA, PVP and Ficoll) at 5% O 2 . Independent of macromolecule supplement, IVM at 20% O 2 was considered optimal for nuclear maturation. To evaluate embryo development, oocytes matured in the previously described conditions were fertilized and cultured at the same oxygen tension used for IVM and assessed for cleavage (43.0 to 74.8%) and development to morulae (16.4 to 33.8%), blastocyst (7.7 to 52.9%) and hatched blastocyst (9.6 to 48.1%). Apart from oxygen tension, all treatments, except Knockout (22.7%), gave similar results for blastocyst development (26.5 to 38.7%). Independently of macromolecule supplement, higher development rates were obtained in an oxygen tension of 20% O 2 (67.4% cleavage, 29.2% morulae, 40.8% blastocyst and 34.0% hatched blastocyst) when compared with 5% O 2 (52.5, 21.8, 18.2 and 15.6%, respectively). This study indicates that BSA, PVA, PVP and Ficoll can replace serum during IVM and that the optimal atmospheric condition for in vitro production of bovine embryos is 5% CO 2 and 20% O 2 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.