Extensins and kindred hydroxyproline-rich glycoproteins occur in dicot cell walls mainly as insoluble integral components that may form an intermolecularly cross-linked network interpenetrated by other polymers. Extensins also occur in muro as a small pool of soluble monomeric precursors to network extensin. These precursors were prepared in milligram quantities by salt elution from the surface of intact cells grown as tomato suspension cultures. Based on an FPLC (Superose-6) gel filtration assay of cross-linked extensin oligomers, a pl 4.6 extensin cross-linking peroxidase isozyme was partially purified from the culture growth medium. Purification involved: volume reduction, ultracentrifugation to remove pectin and co-adsorbed cationic peroxidase, followed by chromatography of anionic extensin peroxidase (pl 4.6) on DEAE-Trisacryl and TSK-gel DEAE-5PW columns. With tomato P1 extensin as substrate and 60 microM H2O2 as co-substrate, at 23 degrees pl 4.6 extensin peroxidase gave a Km of 0.22 mM P1 and a Vmax 0f 70 mumol P1 cross-linked min-1mg-1 enzyme, at the optimum pH 5.5. Assayed with 12 different extensins from representative monocots, dicots, and gymnosperms, the pl 4.6 isozyme cross-linked highly selectively, indicating two natural groups: cross-linking or CL-extensins and non-cross-linking or NCL-extensins. CL-extensins contained the X-Hyp-Val-Tyr-Lys motif and were also highly glycosylated. However, the simplest motif common to CL-extensins but absent from NCL-extensins was Val-Tyr-Lys. Thus, peroxidative coupling of extensin monomers and resistance of the resultant oligomers to depolymerization by anhydrous HF suggests that the intermolecular cross-link involves tyrosine or lysine.
Immunoblotting of a chloroplast mutant (pm7) of Oenothera showed that three proteins, cytochrome f and the 23 kDa and 16 kDa subunits of the oxygen-evolving subcomplex of photosystem II, were larger than the corresponding mature proteins of the wild type and, thus, appear to be improperly processed in pm7. The mutant is also chlorotic and has little or no internal membrane development in the plastids. The improperly processed proteins, and other proteins that are completely missing, represent products of both the plastid and nuclear genomes. To test for linkage of these defects, a green revertant of pm7 was isolated from cultures in which the mutant plastids were maintained in a nuclear background homozygous for the plastome mutator (pm) gene. In this revertant, all proteins analyzed co-reverted to the wild-type condition, indicating that a single mutation in a plastome gene is responsible for the complex phenotype of pm7. These results suggest that the defect in pm7 lies in a gene that affects a processing protease encoded in the chloroplast genome.
Somatic hybrid plants were regenerated following calcium-high pH fusion of the unidirectional, sexually incompatible cross of Petunia parodii wild-type leaf mesophyll protoplasts with protoplasts from a cytoplasmic determined chlorophyll-deficient mutant of P. inflata. Genic complementation to chlorophyll synthesis and sustained growth in the selective medium was used to visually identify hybrid calluses. Hybrid calluses were subsequently regenerated to shoots, rooted, and confirmed as somatic hybrids by their intermediate floral and leaf morphology based on comparison to the 2 n = 4 x = 28 sexual counterpart, dominant anthocyanin expression in the corolla, chromosome number, and peroxidase and maleic dehydrogenase isozyme patterns. Certain cytologically stable somatic hybrids displayed aberrant reproductive and floral morphologies including subtle to moderate corolla and leaf pigment variegation, floral dimension changes and reduced pollen viability. In contrast, cytologically unstable somatic hybrids showed various degrees of aneuploidy coupled with corolla splitting, and irregularities in reproductive organs such as double stigmas and styles in addition to reduced pollen viability. Postulated mechanisms to account for these phenotypic changes in stable and unstable somatic hybrids include nuclear-cytoplasmic genomic incompatibility, chromosome loss in a biparental cytoplasm, or a phenomenon similar to hybrid dysgenesis occurring as a result of somatic fusion.
The chloroplast (cp) and mitochondrial (mt) DNAs of Petunia somatic hybrid plants, which were derived from the fusion of wild-type P. parodii protoplasts with albino P. inflata protoplasts, were analyzed by endonuclease restriction and Southern blot hybridization. Using (32)P-labelled probes that distinguished the two parental cpDNAs at a BamH1 site and at a HpaII site, only the P. parodii chloroplast genome was detected in the 10 somatic hybrid plants analyzed. To examine whether cytoplasmic mixing had resulted in rearrangement of the mitochondrial genome in the somatic hybrids, restriction patterns of purified somatic hybrid and parental mtDNAs were analyzed. Approximately 87% of those restriction fragments which distinguish the two parental genomes are P. inflata-specific. Restriction patterns of the somatic hybrid mtDNAs differ both from the parental patterns and from each other, suggesting that an interaction occurred between the parental mitochondrial genomes in the somatic fusion products which resulted in generation of the novel mtDNA patterns. Southern blot hybridization substantiates this conclusion. In addition, somatic hybrid lines derived from the same fusion product were observed to differ in mtDNA restriction pattern, reflecting a differential sorting-out of mitochondrial genomes at the time the plants were regenerated.
Rapid in vitro propagation of Phlox subulata L. was achieved by inducing shoot explants, 3.0 to 5.0 mm, to proliferate axillary buds on a basal medium containing Murashige and Skoog (M&S) salts, Nitsch Vitamins and supplemented with 3.5 × 10 3 mg/titer gibberellic acid (GA3), 5.0 mg/liter benzylamino purine (BA), and 40 mg/liter adenine sulfate. GA3 was essential for axillary bud elongation. The proliferating shoots were rooted on a medium con-sisting of M&S salts and Vitamins plus 0.01 to 0.5 mg/liter α-naphthaleneacetic acid (NAA). P. paniculata L. was propagated in vitro by culturing internode stem sections from actively growing shoots on Linsmaier and Skoog (L&S) medium containing L&S salts and vitamins, 10 mg/liter BA, 0.1 mg/liter NAA and 40 mg/liter adenine sulfate. About 65 shoots arose on each stem section and they rooted on L&S plus 1.0 mg/liter NAA. Root initiation was stimu-lated in both Phlox spp. by incubating the cultures at 30°C for 1 week.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.