[1] Abrasion by bed load is a ubiquitous and sometimes dominant erosional mechanism for fluvial incision into bedrock. Here we develop a model for bedrock abrasion by saltating bed load wherein the wear rate depends linearly on the flux of impact kinetic energy normal to the bed and on the fraction of the bed that is not armored by transient deposits of alluvium. We assume that the extent of alluvial bed cover depends on the ratio of coarse sediment supply to bed load transport capacity. Particle impact velocity and impact frequency depend on saltation trajectories, which can be predicted using empirical functions of excess shear stress. The model predicts a nonlinear dependence of bedrock abrasion rate on both sediment supply and transport capacity. Maximum wear rates occur at moderate relative supply rates due to the tradeoff between the availability of abrasive tools and the partial alluviation of the bedrock bed. Maximum wear rates also occur at intermediate levels of excess shear stress due to the reduction in impact frequency as grain motion approaches the threshold of suspension. Measurements of bedrock wear in a laboratory abrasion mill agree well with model predictions and allow calibration of the one free model parameter, which relates rock strength to rock resistance to abrasive wear. The model results suggest that grain size and sediment supply are fundamental controls on bedrock incision rates, not only by bed load abrasion but also by all other mechanisms that require bedrock to be exposed in the channel bed.
Recent theoretical investigations suggest that the rate of river incision into bedrock depends nonlinearly on sediment supply, challenging the common assumption that incision rate is simply proportional to stream power. Our measurements from laboratory abrasion mills support the hypothesis that sediment promotes erosion at low supply rates by providing tools for abrasion, but inhibits erosion at high supply rates by burying underlying bedrock beneath transient deposits. Maximum erosion rates occur at a critical level of coarse-grained sediment supply where the bedrock is only partially exposed. Fine-grained sediments provide poor abrasive tools for lowering bedrock river beds because they tend to travel in suspension. Experiments also reveal that rock resistance to fluvial erosion scales with the square of rock tensile strength. Our results suggest that spatial and temporal variations in the extent of bedrock exposure provide incising rivers with a previously unrecognized degree of freedom in adjusting to changes in rock uplift rate and climate. Furthermore, we conclude that the grain size distribution of sediment supplied by hillslopes to the channel network is a fundamental control on bedrock channel gradients and topographic relief.
[1] A mechanistic model is derived for the rate of fluvial erosion into bedrock by abrasion from uniform size particles that impact the bed during transport in both bed and suspended load. The erosion rate is equated to the product of the impact rate, the mass loss per particle impact, and a bed coverage term. Unlike previous models that consider only bed load, the impact rate is not assumed to tend to zero as the shear velocity approaches the threshold for suspension. Instead, a given sediment supply is distributed between the bed and suspended load by using formulas for the bed load layer height, bed load velocity, logarithmic fluid velocity profile, and Rouse sediment concentration profile. It is proposed that the impact rate scales linearly with the product of the near-bed sediment concentration and the impact velocity and that particles impact the bed because of gravitational settling and advection by turbulent eddies. Results suggest, unlike models that consider only bed load, that the erosion rate increases with increasing transport stage (for a given relative sediment supply), even for transport stages that exceed the onset of suspension. In addition, erosion can occur if the supply of sediment exceeds the bed load transport capacity because a portion of the sediment load is transported in suspension. These results have implications for predicting erosion rates and channel morphology, especially in rivers with fine sediment, steep channel-bed slopes, and large flood events.
Meandering rivers are common on Earth and other planetary surfaces, yet the conditions necessary to maintain meandering channels are unclear. As a consequence, self-maintaining meandering channels with cutoffs have not been reproduced in the laboratory. Such experimental channels are needed to explore mechanisms controlling migration rate, sinuosity, floodplain formation, and planform morphodynamics and to test theories for wavelength and bend propagation. Here we report an experiment in which meandering with near-constant width was maintained during repeated cutoff and regeneration of meander bends. We found that elevated bank strength (provided by alfalfa sprouts) relative to the cohesionless bed material and the blocking of troughs (chutes) in the lee of point bars via suspended sediment deposition were the necessary ingredients to successful meandering. Varying flood discharge was not necessary. Scaling analysis shows that the experimental meander migration was fast compared to most natural channels. This high migration rate caused nearly all of the bedload sediment to exchange laterally, such that bar growth was primarily dependent on bank sediment supplied from upstream lateral migration. The high migration rate may have contributed to the relatively low sinuosity of 1.19, and this suggests that to obtain much higher sinuosity experiments at this scale may have to be conducted for several years. Although patience is required to evolve them, these experimental channels offer the opportunity to explore several fundamental issues about river morphodynamics. Our results also suggest that sand supply may be an essential control in restoring self-maintaining, actively shifting gravel-bedded meanders.channel patterns ͉ fluvial geomorphology ͉ river meandering R iver meandering-the lateral bank shifting that produces sinuous, single-thread channels-is inherent to coupled flow and sediment transport in gravel-and sand-bedded channels within a broad range of channel width-to-depth ratios (1). Channel planform classification based on field observations qualitatively suggests that meandering depends strongly on channel slope, grain size, bank strength, and sediment supply (2, 3). Theoretical models of river meandering (2-8), however, assume that the inner and outer banks migrate at the same rate during meandering no matter the bank strength and sediment supply. The processes by which inner bank deposition keeps pace with outer bank erosion are poorly known. This is a fundamental gap in our understanding of meandering rivers.Laboratory experiments have demonstrated that channels with sand or gravel bed and banks will develop bars and planform curvature but will inevitably braid (9-11), because the weak outer banks erode faster than bars can grow and accrete to the inner bank. Braiding often develops due to flow diversion down chutes that form between the bar and the floodplain. Chutes occur because the area of maximum coarse sediment deposition is not located at the boundary between the bar and floodplain, but rather t...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.