We investigate the coherent bremsstrahlung by relativistic electrons in a single crystal excited by hypersonic vibrations. The formula for the corresponding differential cross-section is derived in the case of a sinusoidal wave. The conditions are specified under which the influence of the hypersound is essential. The case is considered in detail when the electron enters into the crystal at small angles with respect to a crystallographic axis. It is shown that in dependence of the parameters, the presence of hypersonic waves can either enhance or reduce the bremsstrahlung cross-section.
The influence of hypersonic waves excited in a single crystal is investigated on the process of electron-positron pair creation by high-energy photons. The coherent part of the corresponding differential cross-section is derived as a function of the amplitude and wave number of the hypersound. The values of the parameters are specified for which the latter affects remarkably on the pair creation cross-section. It is shown that under certain conditions the presence of hypersonic waves can result in enhancement of the process cross-section. *
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.