Models to predict the solid-solution partitioning of trace metals are important tools in risk assessment, providing information on the biological availability of metals and their leaching. Empirically based models, or transfer functions, published to date differ with respect to the mathematical model used, the optimization method, the methods used to determine metal concentrations in the solid and solution phases and the soil properties accounted for. Here we review these methodological aspects before deriving our own transfer functions that relate free metal ion activities to reactive metal contents in the solid phase. One single function was able to predict free-metal ion activities estimated by a variety of soil solution extraction methods. Evaluation of the mathematical formulation showed that transfer functions derived to optimize the Freundlich adsorption constant (K f ), in contrast to functions derived to optimize either the solid or solution concentration, were most suitable for predicting concentrations in solution from solid phase concentrations and vice versa. The model was shown to be generally applicable on the basis of a large number of independent data, for which predicted free metal activities were within one order of magnitude of the observations. The model only over-estimated free-metal ion activities at alkaline pH (>7). The use of the reactive metal content measured by 0.43 m HNO 3 rather than the total metal content resulted in a close correlation with measured data, particularly for nickel and zinc.
Lakes and reservoirs act as sinks for both catchment and atmospherically derived particulates and so their sediments can provide valuable information on temporal changes in these inputs. While the use of lake sediments as environmental archives is well established, reservoir sediments have less frequently been used as temporal records. Yet, for investigating pollution histories, reservoirs are ostensibly of greater interest: they are generally located close to urban and industrial sources of pollution and accumulate sediment rapidly and over similar time periods to major emissions of pollutants. The lack of interest in reservoir sediments stems from the perception that fluctuating water levels are likely to result in significant sediment disturbance. This perception is sustained, perhaps mistakenly, by a lack of research into reservoir sedimentary systems. There is, therefore, a need to review the available published research on reservoir sedimentation processes and patterns, the relatively few studies that have used reservoir sediments and relevant studies from the lake-sediment literature, and thus critically evaluate the potential and problems of using reservoir sediments as temporal records of pollution. Current understanding of the processes of sedimentation and resulting distributions are reviewed. Some significant differences between sedimentation in lakes and reservoirs are highlighted and the implications for sampling and interpretation of sedimentary records discussed. It is suggested that, at present, a valuable resource is being underutilized and it is demonstrated that, where sediment deposition patterns are taken into account, reservoir sedimentary records can provide important data for reconstructing past atmospheric and catchment pollutant inputs
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.