Hidden states of matter may be created if a system out of equilibrium follows a trajectory to a state that is inaccessible or does not exist under normal equilibrium conditions. We found such a hidden (H) electronic state in a layered dichalcogenide crystal of 1T-TaS2 (the trigonal phase of tantalum disulfide) reached as a result of a quench caused by a single 35-femtosecond laser pulse. In comparison to other states of the system, the H state exhibits a large drop of electrical resistance, strongly modified single-particle and collective-mode spectra, and a marked change of optical reflectivity. The H state is stable until a laser pulse, electrical current, or thermal erase procedure is applied, causing it to revert to the thermodynamic ground state.
We investigate the quasiparticle (QP) relaxation and low-energy electronic structure in undoped SmFeAsO and near-optimally doped SmFeAsO0.8F0.2 single crystals-exhibiting spin-density wave (SDW) ordering and superconductivity, respectively-using pump-probe femtosecond spectroscopy. In the undoped single crystals a single relaxation process is observed, showing a remarkable critical slowing down of the QP relaxation dynamics at the SDW transition temperature TSDW125 K. In the superconducting (SC) crystals multiple relaxation processes are present with distinct SC-state quasiparticle recombination dynamics exhibiting a BCS-like T-dependent superconducting gap, and a pseudogap (PG)-like feature with an onset above 180 K indicating the existence of a pseudogap of magnitude 2ΔPG120 meV above Tc. From the pump-photon energy dependence we conclude that the SC state and PG relaxation channels are independent, implying the presence of two separate electronic subsystems. We discuss the data in terms of spatial inhomogeneity and multiband scenarios, finding that the latter is more consistent with the present data.
We systematically investigate the photoexcited (PE) quasi-particle (QP) relaxation and lowenergy electronic structure in electron doped Ba(Fe1−xCox)2As2 single crystals as a function of Co doping, 0 ≤ x ≤ 0.11. The evolution of the photoinduced reflectivity transients with x proceeds with no abrupt changes. In the orthorhombic spin-density-wave (SDW) state a bottleneck associated with a partial charge-gap opening is detected, similar to previous results in different SDW iron-pnictides. The relative charge gap magnitude 2∆(0)/kBTs decreases with increasing x. In the superconducting (SC) state an additional relaxational component appears due to a partial (or complete) destruction of the SC state proceeding on a sub-0.5-picosecond timescale. From the SC component saturation behavior the optical SC-state destruction energy, Up/kB = 0.3 K/Fe, is determined near the optimal doping. The subsequent relatively slow recovery of the SC state indicates clean SC gaps. The T -dependence of the transient reflectivity amplitude in the normal state is consistent with the presence of a pseudogap in the QP density of states. The polarization anisotropy of the transients suggests that the pseudogap-like behavior might be associated with a broken 4-fold rotational symmetry resulting from nematic electronic fluctuations persisting up to T ≃ 200 K at any x. The second moment of the Eliashberg function, obtained from the relaxation rate in the metallic state at higher temperatures, indicates a moderate electron phonon coupling, λ 0.3, that decreases with increasing doping.
Strongly correlated systems exhibit intriguing properties caused by intertwined microscopic interactions that are hard to disentangle in equilibrium. Employing non-equilibrium time-resolved photoemission spectroscopy on the quasi-two-dimensional transition-metal dichalcogenide 1T -TaS2, we identify a spectroscopic signature of double occupied sites (doublons) that reflects fundamental Mott physics. Doublon-hole recombination is estimated to occur on time scales of one electronic hopping cycleh/J ≈ 14 fs. Despite strong electron-phonon coupling the dynamics can be explained by purely electronic effects captured by the single band Hubbard model, where thermalization is fast in the small-gap regime. Qualitative agreement with the experimental results however requires the assumption of an intrinsic hole-doping. The sensitivity of the doublon dynamics on the doping level provides a way to control ultrafast processes in such strongly correlated materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.