The tensile mechanical properties and fracture toughness of a Bisphenol‐A type difunctional epoxy resin, cured with different amounts of metaphenylene diamine, using two cure cycles, were determined over a range of temperature. The tensile modulus in the glassy state was seen to be predominantly related to intermolecular packing, while in the rubbery state crosslink density was the important factor. Yielding appeared to be due to an increase in free volume as a result of dilatation during the tensile test and was related to a critical shear stress. The large strain properties like tensile strength, elongation‐to‐break, and toughness showed a more complex dependence on chemical structure, molecular architecture, intermolecular packing, and crosslink density. The roles played by the relaxation processes in determining mechanical properties are highlighted.
SynopsisThe moisture transport characteristics of a difunctional epoxy resin cured with different amounts of metaphenylene diamine, using two cure cycles, are reported. Besides studying the kinetics of moisture sorption at 20, 50, 75, and lWC, the investigations also included measurement of thermal expansion coefficients and dynamic mechanical transition of the dry and wet samples. The moisture sorption of the sample is shown to be related to its specific volume and hence to its fractional free volume. In the glassy state, the free volume is apparently in the form of frozen voids, and moisture sorption/desorption at this temperature is of the Langmuir type with little or no bond formation. At higher temperatures the free volume is generated predominantly through segmental motion of the a transition. The Henry's Law mode becomes operative, and the moisture can now form bonds. "he possible effect of nonuniform crosslink density on moisture sorption is also considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.