The linear equations of motion that describe the behavior of small disturbances in a porous solid containing both liquid and gas are solved for bulk wave propagation. The equations have been simplified by neglecting effects due to changes in capillary pressure. With this simplifying assumption, the equations reduce to two coupled (vector) equations of the form found in Biot’s equations (for full saturation) but with more complicated coefficients. As in fully saturated solids, two shear waves with the same speed but different polarizations exist as do two compressional waves with distinct speeds. Attenuation effects can be enhanced in the partially saturated solid, depending on the distribution of gas in the pore space. Two models of the liquid/gas spatial distribution are considered: a segregated-fluids model and a mixed-fluids model. The two models predict comparable attentuation when the gas saturation is low, but the segregated-fluids model predicts a more rapid roll-off of attenuation as the gas saturation increases.
Some methods are examined for the matrix problems arising in the computation of seismograms in a stratified medium. In particular, the Thornson-Haskell and Kennett algorithms are placed in a common setting, and their connections with standard methods in numerical analysis are given. Finally, a new formulation is presented which has advantages both for physical insight and for numerical accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.