Figure 1: A general overview of the various steps involved in the proposed approach (green panels) that bypasses the current methods used by the majority of the radiologists and state-of-the-art approaches based on thresholding and semi-automatic approaches (red panel).
Time is a fundamental factor during stroke treatments. A fast, automatic approach that segments the ischemic regions helps treatment decisions. In clinical use today, a set of color-coded parametric maps generated from computed tomography perfusion (CTP) images are investigated manually to decide a treatment plan. We propose an automatic method based on a neural network using a set of parametric maps to segment the two ischemic regions (core and penumbra) in patients affected by acute ischemic stroke. Our model is based on a convolution-deconvolution bottleneck structure with multi-input and slow fusion. To address the data imbalance issue, a loss function based on the focal Tversky index is used. The proposed architecture demonstrates effective performance and results comparable to the ground truth annotated by neuroradiologists. A Dice coefficient of 0.81 for penumbra and 0.52 for core over the large vessel occlusion test set is achieved. The full implementation is available at: *************
Objective: Computed tomography (CT) scan is a fast and widely used modality for early assessment in patients with symptoms of a cerebral ischemic stroke. CT perfusion (CTP) is often added to the protocol and is used by radiologists for assessing the severity of the stroke. Standard parametric maps are calculated from the CTP datasets. Based on parametric value combinations, ischemic regions are separated into presumed infarct core (irreversibly damaged tissue) and penumbra (tissue-at-risk). Different thresholding approaches have been suggested to segment the parametric maps into these areas. The purpose of this study is to compare fully-automated methods based on machine learning and thresholding approaches to segment the hypoperfused regions in patients with ischemic stroke. Methods: We test two different architectures with three mainstream machine learning algorithms. We use parametric maps as input features, and manual annotations made by two expert neuroradiologists as ground truth. Results: The best results are produced with random forest (RF) and Single-Step approach; we achieve an average Dice coefficient of 0.68 and 0.26, respectively for penumbra and core, for the three groups analysed. We also achieve an average in volume difference of 25.1ml for penumbra and 7.8ml for core. Conclusions: Our best RFbased method outperforms the classical thresholding approaches, to segment both the ischemic regions in a group of patients regardless of the severity of vessel occlusion. Significance: A correct visualization of the ischemic regions will guide treatment decisions better.
Precise and fast prediction methods for ischemic areas (core and penumbra) in acute ischemic stroke (AIS) patients are of significant clinical interest: they play an essential role in improving diagnosis and treatment planning. Computed Tomography (CT) scan is one of the primary modalities for early assessment in patients with suspected AIS. CT Perfusion (CTP) is often used as a primary assessment to determine stroke location, severity, and volume of ischemic lesions. Current automatic segmentation methods for CTP mostly use already processed 3D color maps conventionally used for visual assessment by radiologists as input. Alternatively, the raw CTP data is used on a slice-by-slice basis as 2D+time input, where the spatial information over the volume is ignored. In this paper, we investigate different methods to utilize the entire 4D CTP as input to fully exploit the spatio-temporal information. This leads us to propose a novel 4D convolution layer. Our comprehensive experiments on a local dataset comprised of 152 patients divided into three groups show that our proposed models generate more precise results than other methods explored. A Dice Coefficient of 0.70 and 0.45 is achieved for All authors are with the BioMedical Data analysis group (https://www.uis.no/en/ bmdlab)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.