The uni mutant demonstrates that there are shared regulatory processes in the morphogenesis of leaves and flowers and that floral meristem identity genes have an extended role in plant development. Pleiotropic regulatory genes such as UNI support the hypothesis that leaves and flowers derive from a common ancestral sporophyll-like structure. The regulation of indeterminancy during leaf and flower morphogenesis by UNI may reflect a primitive function for the gene in the pre-angiosperm era.
Tendrils are contact-sensitive, filamentous organs that permit climbing plants to tether to their taller neighbors. Tendrilled legume species are grown as field crops, where the tendrils contribute to the physical support of the crop prior to harvest. The homeotic tendril-less (tl) mutation in garden pea (Pisum sativum), identified almost a century ago, transforms tendrils into leaflets. In this study, we used a systematic marker screen of fast neutron-generated tl deletion mutants to identify Tl as a Class I homeodomain leucine zipper (HDZIP) transcription factor. We confirmed the tendril-less phenotype as loss of function by targeting induced local lesions in genomes (TILLING) in garden pea and by analysis of the tendril-less phenotype of the t mutant in sweet pea (Lathyrus odoratus). The conversion of tendrils into leaflets in both mutants demonstrates that the pea tendril is a modified leaflet, inhibited from completing laminar development by Tl. We provide evidence to show that lamina inhibition requires Unifoliata/LEAFY-mediated Tl expression in organs emerging in the distal region of the leaf primordium. Phylogenetic analyses show that Tl is an unusual Class I HDZIP protein and that tendrils evolved either once or twice in Papilionoid legumes. We suggest that tendrils arose in the Fabeae clade of Papilionoid legumes through acquisition of the Tl gene.
Pinnate compound leaves have laminae called leaflets distributed at intervals along an axis, the rachis, whereas simple leaves have a single lamina. In simple-and compound-leaved species, the PHANTASTICA (PHAN) gene is required for lamina formation. Antirrhinum majus mutants lacking a functional gene develop abaxialized, bladeless adult leaves. Transgenic downregulation of PHAN in the compound tomato (Solanum lycopersicum) leaf results in an abaxialized rachis without leaflets. The extent of PHAN gene expression was found to be correlated with leaf morphology in diverse compound-leaved species; pinnate leaves had a complete adaxial domain of PHAN gene expression, and peltate leaves had a diminished domain. These previous studies predict the form of a compound-leaved phan mutant to be either peltate or an abaxialized rachis. Here, we characterize crispa, a phan mutant in pea (Pisum sativum), and find that the compound leaf remains pinnate, with individual leaflets abaxialized, rather than the whole leaf. The mutant develops ectopic stipules on the petiole-rachis axis, which are associated with ectopic class 1 KNOTTED1-like homeobox (KNOX) gene expression, showing that the interaction between CRISPA and the KNOX gene PISUM SATIVUM KNOTTED2 specifies stipule boundaries. KNOX and CRISPA gene expression patterns indicate that the mechanism of pea leaf initiation is more like Arabidopsis thaliana than tomato.
A DNA sequence between two legumin genes in Pisum is a member of the copia-like class of retrotransposons and represents one member of a polymorphic and heterogeneous dispersed repeated sequence family in Pisum. This sequence can be exploited in genetic studies either by RFLP analysis where several markers can be scored together, or the segregation of individual elements can be followed after PCR amplification of specific members.
A cytogenetic analysis of inbred lines that have been used to generate genetic maps of pea is presented. Mitotic karyotyping of the inbred lines and meiotic studies of their F1 hybrids have been used to test the prediction that structural differences exist between the parental lines. The results are not compatible with the previously published molecular data. A reordered and updated linkage map of pea is presented that is consistent with the cytogenetic data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.