A pulsed PECVD reactor has been successfully constructed for laboratory scale studies of plasma polymerized thin films. A computer control system based on National Instrument's LABVIEW software controls power supply sequence, feed injection, and introduction of RF energy. An optical fiber and a photo diode allow the user to monitor the emitted light for each pulse. A fast ionization gauge is used to characterize the pressure evolution over time, subsequent to acetylene gas injection. Substrates with diameter as large as 10 cm can be accommodated within the reactor. Both aniline liquid and acetylene gas have been used as reactor feed. The deposited plasma-polymerized films were characterized using AFM and SEM. Electrical conductivity of plasma polymerized acetylene film was also measured
A model has been developed to predict the evolution of monomer pressure over time in an inductively coupled plasma reactor. The model uses an analogous electrical circuit to predict preplasma gas flow conditions. Based on the monomer pressure model, a relationship between pressure prior to electrical discharge and the corresponding plasma polymerized acetylene deposition rate was measured experimentally. A plot of measured deposition rate versus preplasma monomer pressure was observed to have a relative maximum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.