A general approach for optically controlled spatial structuring of overdense plasmas generated at the surface of initially plain solid targets is presented. We demonstrate it experimentally by creating sinusoidal plasma gratings of adjustable spatial periodicity and depth, and study the interaction of these transient structures with an ultraintense laser pulse to establish their usability at relativistically high intensities. We then show how these gratings can be used as a "spatial ruler" to determine the source size of the high-order harmonic beams produced at the surface of an overdense plasma. These results open new directions both for the metrology of laser-plasma interactions and the emerging field of ultrahigh intensity plasmonics.
A model is proposed to account for Kerr-like nonlinearity induced by femtosecond pulses via terahertz generation and electro-optical effect. This phenomenon, so far overlooked, is evidenced in a zinc blende single crystal with a heterodyne optical Kerr effect setup. The spectral evolution of this phenomenon as well as its noninstantaneous response character are reported. Its competition with a third-order optical Kerr effect is demonstrated.
Understanding Warm Dense Matter (WDM), the state of planetary interiors, is a new frontier in scientific research. There exists very little experimental data probing WDM states at the atomic level to test current models and those performed up to now are limited in quality. Here, we report a proof-of-principle experiment that makes microscopic investigations of materials under dynamic compression easily accessible to users and with data quality close to that achievable at ambient. Using a single 100 ps synchrotron x-ray pulse, we have measured, by K-edge absorption spectroscopy, ns-lived equilibrium states of WDM Fe. Structural and electronic changes in Fe are clearly observed for the first time at such extreme conditions. The amplitude of the EXAFS oscillations persists up to 500 GPa and 17000 K, suggesting an enduring local order. Moreover, a discrepancy exists with respect to theoretical calculations in the value of the energy shift of the absorption onset and so this comparison should help to refine the approximations used in models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.