Secondary flows in vane passages sweep off the endwall and onto the suction surface at a location typically close to the throat. These endwall/vane junction flows often have an immediate impact on heat transfer in this region and also move any film cooling off the affected region of the vane. The present paper documents the impact of secondary flows on suction surface heat transfer acquired over a range of turbulence levels (0.7–17.4%) and a range of exit chord Reynolds numbers (500,000–2,000,000). Heat transfer data are acquired with both an unheated endwall boundary condition and a heated endwall boundary condition. The vane design includes an aft loaded suction surface and a large leading edge diameter. The unheated endwall boundary condition produces initially very high heat transfer levels due to the thin thermal boundary layer starting at the edge of heating. This unheated starting length effect quickly falls off with the thermal boundary layer growth as the secondary flow sweeps up onto the vane suction surface. The heat transfer visualization for the heated endwall condition shows no initial high heat transfer level near the edge of heating on the vane. The heat transfer level in the region affected by the secondary flows is largely uniform, except for a notable depression in the affected region. This heat transfer depression is believed due to an upwash region generated above the separation line of the passage vortex, likely in conjunction with the counter rotating suction leg of the horseshoe vortex. The extent and definition of the secondary flow-affected region on the suction surface are clearly evident at lower Reynolds numbers and lower turbulence levels when the suction surface flow is largely laminar. The heat transfer in the plateau region has a magnitude similar to a turbulent boundary layer. However, the location and extent of this secondary flow-affected region are less perceptible at higher turbulence levels where transitional or turbulent flow is present. Also, aggressive mixing at higher turbulence levels serves to smooth out discernable differences in the heat transfer due to the secondary flows.
Pressure surface film cooling from discrete holes can often be challenging due to higher than optimum coolant to surface pressure ratios, effects of high levels of flow field turbulence, and the potential for clogging. Double wall cooling methods can be designed to collect spent cooling air and distribute the film cooling downstream through a slot. Incremental impingement is a new internal cooling method designed for cooling the leading edge region and pressure surface. Internally, incremental impingement includes high solidity pedestals to conduct heat and transmit thermal stresses due to temperature variations between cold and hot side surfaces. Subsequently, the flow is collected downstream from the last row of pedestals and discharged through a slot. Experimental and computational research from mesh slots, which have dense arrays of pedestals upstream from the discharge, and slots downstream from high solidity pedestal arrays have shown that turbulence and vorticity generated inside a film cooling plenum can have a significant impact on downstream film cooling. This impact of plenum flow disturbances is in addition to the film cooling dissipation caused by external flow field turbulence. Incremental impingement, in addition to high solidity pedestals, has impingement jets integrated behind the last row of pedestals which may cause further disruption to the film discharge and flow field interaction. The present measurements document the film cooling effectiveness distributions downstream from a slot located at 62% arc along the pressure surface of a vane. The plenum has been designed to include high solidity pedestals and impingement jets consistent with an incremental impingement geometry. Blowing ratios of 0.4, 0.7 and 1.0 have been investigated at vane exit chord Reynolds numbers of 500,000, 1,000,000 and 2,000,000 at density ratios a little over 1. These conditions have been run at 5 independent turbulence levels ranging from 0.7% to over 17%. The results provide a consistent picture of pressure surface slot film cooling downstream from incremental impingement.
Secondary flows in vane passages sweep off the endwall and onto the suction surface at a location typically close to the throat. These endwall/vane junction flows often have an immediate impact on heat transfer in this region and also move any film cooling off the affected region of the vane. The present paper documents the impact of secondary flows on suction surface heat transfer acquired over a range of turbulence levels (0.7% through 17.4%) and a range of exit chord Reynolds numbers (500,000 through 2,000,000). Heat transfer data are acquired with both an unheated endwall boundary condition and a heated endwall boundary condition. The vane design includes an aft loaded suction surface and a large leading edge diameter. The unheated endwall boundary condition produces initially very high heat transfer levels due to the thin thermal boundary layer starting at the edge of heating. This unheated starting length effect quickly falls off with the thermal boundary layer growth as the secondary flow sweeps up onto the vane suction surface. The heat transfer visualization for the heated endwall condition shows no initial high heat transfer level near the edge of heating on the vane. The heat transfer level in the region affected by the secondary flows is largely uniform, except for a notable depression in the affected region. This heat transfer depression is believed due to an upwash region generated above the separation line of the passage vortex, likely in conjunction with the counter rotating suction leg of the horseshoe vortex. The extent and definition of the secondary flow affected region on the suction surface is clearly evident at lower Reynolds numbers and lower turbulence levels when the suction surface flow is largely laminar. The heat transfer in the plateau region has a magnitude similar to a turbulent boundary layer. However, the location and extent of this secondary flow affected region is less perceptible at higher turbulence levels where transitional or turbulent flow is present. Also, aggressive mixing at higher turbulence levels serves to smooth out discernable differences in the heat transfer due to the secondary flows.
Developing robust film cooling protection on the suction surface of a vane is critical to managing the high heat loads which exist there. Suction surface film cooling often produces high levels of film cooling but can be influenced by secondary flows and some dissipation due to free-stream turbulence. Directly downstream from suction surface film cooling, heat loads are often significantly mitigated and internal cooling levels can be modest. One thermodynamically efficient way to cool the suction surface of a vane is with a counter cooling scheme. This combined internal/external cooling method moves cooling air in a direction opposite to the external flow through an internal convection array. The coolant is then discharged upstream where the high level of film cooling can offset the reduced cooling potential of the spent cooling air. The present suction surface film cooling arrangement combines a slot film cooling discharge on the near suction surface from an incremental impingement cooling method with a second from a counter cooling section. A second counter cooling section is added further downstream on the suction surface. The internal cooling plenums replicate the geometry of the cooling methods to ensure the fluid dynamics of the flow discharging from the slots are representative of the actual internal cooling geometry. These film cooling flows have been tested at blowing ratios of 0.5 and 1.0 for the initial slot and blowing ratios of 0.15 and 0.3 for the two downstream slots. The measurements have been taken at exit chord Reynolds numbers of 500,000, 1,000,000, and 2,000,000 with inlet turbulence levels ranging from 0.7% to 12.6%. Film cooling effectiveness measurements were acquired using both thermocouples and infrared thermography. The infrared thermography shows the influence of secondary flows on film cooling coverage near the suction surface endwall junction. The film cooling effectiveness results at varied blowing ratios, turbulence levels and Reynolds numbers document the impact of these major variables on suction surface slot film cooling. The results provide a consistent picture of the slot film cooling for the present three slot arrangement on the suction surface and they support the development of an advanced double wall cooling method.
Leading edge heat loads on turbine vanes diminish relative to fully turbulent heat loads with increasing Reynolds number. Leading edge regions of turbine nozzles are often cooled using showerhead arrays while the near pressure surface is often protected with rows of shaped holes. However, in environments with impurities in the fuel or air cooling holes are susceptible to clogging and constitute sites where deposition can begin. Showerhead film cooling can be disruptive to downstream boundary layer development and film cooling. Also, high turbulence levels which normally exist in these regions quickly mix away film cooling protection. Consequently, internal cooling has many advantages over showerhead cooling and pressure surface film protection. Internal cooling produces higher levels of internal effectiveness and spent cooling air can be subsequently directed to near optimum discharge geometries for film protection. Conventional cooling methods have disadvantages when trying to cool leading edge regions and near pressure surfaces. Cooling air in pin fin arrays quickly heats up developing a lower cooling potential. Impingement arrays have issues due to increasing crossflows which deflect impingement jets and insulate the surfaces needing cooling. Incremental impingement overcomes these disadvantages by incrementally adding cooling air where needed and overcoming crossflows by hiding impingement jets behind high solidity pedestals. This paper presents heat transfer and pressure drop results for an incremental impingement array with variable hole size. The experimental measurements were acquired using a bench scale test rig. The array Reynolds numbers tested ranged from 5000 to 60,000 based on the average velocity of the accumulated flow through the minimum array flow area. The array consisted of an initial impingement row between a row of elongated pedestals followed by 7 additional high solidity round pedestal rows in a staggered arrangement. Impingement holes of variable sizes were placed behind even rows. Generally, the array consisted of rows of round pins spaced at 1.625 diameters in the spanwise direction, 1.074 diameters in the streamwise direction with a channel height to diameter ratio of 0.5. Impingement hole to pin diameter ratios used included d/D of 0.295, 0.351, and 0.417. Hole configurations were limited to arrays where the hole area upstream from the last row of holes was no more than 109% of the minimum array flow area. Heat transfer measurements were acquired at a constant temperature within the array and are reported on a row averaged basis in terms of the local internal effectiveness and the cooling parameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.