The large-scale and low-cost fabrication of high sensitivity sensors for the real-time detection of biochemicals and molecular substances opens up new opportunities in the areas of bioanalytic screening and medical diagnostics. Planar integrated photonic resonators that can be fabricated with a low footprint, in spatial and wavelength multiplexed arrangements, and that enable integration with microfluidics on the wafer scale have emerged as a promising sensing platform for these application fields. We realized an optofluidic and label-free biosensor that is based on hydrogenated amorphous silicon microring resonators embedded in silicon/glass microfluidic channels for analyte injection and biomolecule immobilization. The optofluidic sensor merits for refractive index and biomolecule sensing are evaluated by sensitivity and detection limit simulations, whereas a proof of concept is demonstrated by real-time protein immobilization experiments of functionalized resonators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.