The oscillatory characteristics and dynamic structure of periodic flow in an oscillatory gas flow meter were studied experimentally and numerically. The flow oscillations were triggered by the Coanda effect and an universal correlation between Strouhal number and Reynolds number, Str = 1.09 x 1(T 3 for ReHD > 800, was deduced based on spectral analysis of the pressure fluctuations in the flow channel. Numerical simulation indicated that the evolution of the flow patterns was classified into stages of induction and sustainable periodic oscillation. The transformation between the two stages was noticeably affected by the design of the feedback channels. The results further revealed that the development of the main vortex in the oscillating chamber and the small vortices at the entrance of the feedback channels concurrently modulate the mechanism of oscillation. The small vortices located at both entrances of the feedback channels play the role of a pair of modulating valves, which alternatively switch on and off the bypass flow through each feedback channel, thus reinforcing the periodic oscillation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.