Efficient DNA cleavage with an iron complex without added reductant Roelfes, Gerard; Branum, M.E.; Wang, L.; Que, L.; Feringa, B.L.; Que, Jr.
Pigs that grow slower than their contemporaries can cause complications for animal welfare and profitability. This study was conducted to investigate factors that may contribute to slow growth of pigs. Pigs ( = 440) farrowed by 65 sows were monitored from birth to market. Pigs were categorized as slow, average, and fast growers based on market weight adjusted to 170 d of age (slow growers were <105 kg, average growers were between 105 and 125 kg, and fast growers were >125 kg). Blood samples were collected from 48 focal pigs at 9 and 21 wk of age and analyzed for hormone and free AA concentrations. Data were analyzed using the Mixed and Logistic procedures of SAS. Slow-growing pigs accounted for 10% of pigs marketed, average growers accounted for 49% of pigs marketed, and fast growers accounted for 41% of pigs marketed. Compared with fast growers, slow growers were lighter at birth ( < 0.01), at weaning ( < 0.01), and at nursery exit ( < 0.01) and had less backfat ( < 0.01) and smaller loin muscle area ( < 0.01) at marketing at 21 wk of age. Slow growers had lower plasma concentrations of IGF-1 ( = 0.03) and insulin ( < 0.001) during the nursery period and lower concentrations of leptin ( < 0.001) and insulin ( < 0.001) during the finishing period compared with average and fast growers. Serum concentrations of several essential, nonessential, and total free AA were less for slow growers during both the nursery and finishing periods compared with average and fast growers. Gilts were more likely to become slow growers than barrows (odds ratio = 2.17, 95% confidence interval = 1.19 to 3.96, = 0.01). Litter size and parity of the pigs' dam were not associated with slow growth. These results suggest that low concentrations of IGF-1, insulin, leptin, and AA may contribute to or be associated with slow growth in pigs.
Some sources of corn dried distillers grains with solubles (DDGS) contain relatively high amounts of oxidized lipids produced from PUFA peroxidation during the production process. These oxidized lipids may impair metabolic oxidation status of pigs. The objective of this study was to understand the effects of feeding corn-soybean meal diets (CON) or diets containing 30% highly oxidized DDGS with 1 of 3 levels of supplemental vitamin E (dl-α-tocopheryl acetate), none, the 1998 NRC level (11 IU/kg), and 10x the 1998 NRC level (110 IU/kg), on oxidative status of nursery pigs. The DDGS source used in this study contained the greatest thiobarbituric acid reactive substances (TBARS) value, peroxide value, and total S content (5.2 ng/mg oil, 84.1 mEq/kg oil, and 0.95%, respectively) relative to 30 other DDGS sources sampled (mean values = 1.8 ng/mg oil, 11.5 mEq/kg oil, and 0.50%, respectively). Barrows (n = 54) were housed in pens and fed the experimental diets for 8 wk after weaning and transferred to individual metabolism cages for collection of feces, urine, blood, and liver samples. Total S content was greater in DDGS diets than in CON (0.39 vs. 0.19%). Dietary inclusion of 30% DDGS improved apparent total tract digestibility of S (86.8 vs. 84.6%; P < 0.001) and S retained (2.94 vs. 2.07 g/d; P < 0.01) compared with CON. Although pigs were fed highly oxidized DDGS in this study, serum TBARS were similar between DDGS and CON treatments. There was an interaction between DDGS and dietary vitamin E level for serum concentrations of α-tocopherol. Serum α-tocopherol concentrations were greater (P < 0.001) in pigs fed DDGS diets than those fed CON when dl-α-tocopheryl acetate was not provided or provided at the NRC level but were similar when dl-α-tocopheryl acetate was supplemented at the 10x NRC level. Pigs fed DDGS diets had greater serum concentrations of S-containing AA, particularly Met (P < 0.001) and taurine (P = 0.002), compared with those fed CON. Liver glutathione concentration was greater in pigs fed DDGS diets than CON (56.3 vs. 41.8 nmol/g). Dietary inclusion of DDGS (P < 0.001) and vitamin E (P = 0.03) increased enzyme activity of glutathione peroxidase. The elevated concentrations of S-containing antioxidants (Met, taurine, and glutathione) in vivo may protect pigs against oxidative stress when feeding highly oxidized DDGS. Therefore, the increased S content in DDGS may be beneficial, and increasing concentrations of vitamin E in diets may not be necessary to protect pigs against metabolic oxidative stress when feeding high S and highly peroxidized DDGS.
The electrical impedance and its first derivative (dZ/dt) were measured at 100 kHz on 10 normal males in supine, sitting, and during upright bicycle exercise in order to compare the contribution of regional electrodes to the standard band electrode signal and to evaluate the possible use of spot electrodes for stroke volume (SV) measurements. Simultaneous measurements were made from band electrodes placed around the neck and lower thorax and from spot electrodes which recorded signals from the neck, upper thorax, and lower thorax. The results showed that approximately equal parts of the dZ/dt waveform came from the neck and upper thorax with the lower thorax contribution small but providing important features of the band signal. Changing from supine to sitting showed percentage decreases of 35% and 46% for the band and neck signals, respectively, with an increase of 19% for the upper thorax signal. The percentage increases in SV with upright exercise were 34%, 52%, and 24% for the bands, neck, and upper thorax signals, respectively. Band signal is made up of different signals from various regions of the thorax. Its ability to predict correct changes in SV may result from some "lucky" coincidences. The use of regional electrodes will probably not give the same SV information but may be important in measuring regional activities of the central circulation.
Rapeseed (RS) is an abundant and inexpensive source of energy and AA in diets for monogastrics and a sustainable alternative to soybean meal. It also contains diverse bioactive phytochemicals that could have antinutritional effects at high dose. When the RS-derived feed ingredients (RSF) are used in swine diets, the uptake of these nutrients and phytochemicals is expected to affect the metabolic system. In this study, 2 groups of young pigs (17.8 ± 2.7 kg initial BW) were equally fed a soybean meal-based control diet and an RSF-based diet, respectively, for 3 wk. Digesta, liver, and serum samples from these pigs were examined by liquid chromatography-mass spectrometry-based metabolomic analysis to determine the metabolic effects of the 2 diets. Analyses of digesta samples revealed that sinapine, sinapic acid, and gluconapin were robust exposure markers of RS. The distribution of free AA along the intestine of RSF pigs was consistent with the reduced apparent ileal digestibility of AA observed in these pigs. Despite its higher fiber content, the RSF diet did not affect microbial metabolites in the digesta, including short-chain fatty acids and secondary bile acids. Analyses of the liver and serum samples revealed that RSF altered the levels of AA metabolites involved in the urea cycle and 1-carbon metabolism. More importantly, RSF increased the levels of multiple oxidized metabolites and aldehydes while decreased the levels of ascorbic acid and docosahexaenoic acid-containing lipids in the liver and serum, suggesting that RSF could disrupt redox balance in young pigs. Overall, the results indicated that RSF elicited diverse metabolic events in young pigs through its influences on nutrient and antioxidant metabolism, which might affect the performance and health in long-term feeding and also provide the venues for nutritional and processing interventions to improve the utilization of RSF in pigs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.