Sonic hedgehog ( Shh) in dental epithelium regulates tooth morphogenesis by epithelial-mesenchymal signaling transduction. However, the action of Shh signaling regulation in this process is not well understood. Here we find that mesenchymal Suppressor of Fused ( Sufu), a major negative regulator of Shh signaling, plays an important role in modulating the tooth germ morphogenesis during the bud-to-cap stage transition. Deletion of Sufu in dental mesenchyme by Dermo1-Cre mice leads to delayed development of mandibular molar into cap stage with defect of primary enamel knot (EK) formation. We show the disruption of cell proliferation and programmed cell death in dental epithelium and mesenchyme in Sufu mutants. Epithelial-specific adhesion molecule E-cadherin is evidently reduced in the bilateral basal cells of tooth germ at E14.5. The cells in the presumptive EK, predominantly expressing P-cadherin, appear stratified but fail to condense. Moreover, the transcripts of primary EK marker genes, including Shh, Fgf4, and p21, are significantly decreased compared to controls. In contrast, we find that deficiency of Sufu results in elevation of Shh signaling in mesenchyme, indicated by the significant upregulation of Gli1 and Ptch1. Meanwhile, the expression of Bmp4 and Fgf3, the critical factors of mesenchymal-epithelial induction, is significantly inhibited in dental mesenchyme. Furthermore, the expression of Runx2 experiences a transient decrease at the bud stage. Taken together, these data suggest that mesenchymal Sufu is necessary for tuning the Shh signaling, which may act as an upstream modulator of Bmp4 and Fgf3 to coordinate the interplay between the dental mesenchyme and epithelium of tooth germ.
Aim To investigate the bioactive metabolite of endophytic fungus from Kalimeris indica. Methods and Results A strain ZJLQ336 was separated from the leaves of K. indica. It was identified as Cadophora orchidicola based on the phylogenetic analysis of ITS‐rDNA sequences. From the fermentation broth a metabolite cercosporamide (compound 1) was isolated, and its structure was determined by spectroscopic analysis. Additionally, this compound was subjected to bioactivity assays, including antifungal activity against seven plant pathogenic fungi, as well as its potential immunoregulatory effects on HEK‐BLUE™‐hTLR4 cells, splenocytes and macrophages. The results showed that cercosporamide had strong growth inhibition against five common plant pathogenic fungi, including Pestalotia diospyri, Botrytis cinerea, Fusarium oxysporum, Sclerotium rolfsii and Penicillum digitatum with EC50 values of 5·29 × 10−3, 0·61, 0·93, 2·89 and 6·7 μg ml−1 respectively. Among which S. rolfsii was one of the main pathogens in K. indica. Moreover, cercosporamide not only significantly stimulated TLR4 activation, splenocyte proliferation and production of cytokines, IFN‐γ and TNF‐α, but also up‐regulated the production of TNF‐α and NO in RAW264.7 macrophages clearly. Conclusions This is the first report of endophytic C. orchidicola from K. indica and its metabolite cercosporamide. The results of pharmacological tests highlight the potential fungicide and TLR4 agonist of cercosporamide. Significance and Impact of the Study This study indicates endophytic fungi are good resources for natural bioactive metabolites. It also suggests that cercosporamide is a potential fungicide and TLR4 agonist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.