BackgroundPerforming microsurgery requires a breadth and depth of experience that has arguably been reduced as result of diminishing operating exposure. Fresh frozen cadavers provide similar tissue handling to real-time operating; however, the bloodless condition restricts the realism of the simulation. We describe a model to enhance flap surgery simulation, in conjunction with qualitative assessment.MethodsThe fresh frozen cadaveric limbs used in this study were acquired by the University. A perfused fresh cadaveric model was created using a gelatin and dye mixture in a specific injection protocol in order to increase the visibility and realism of perforating vessels, as well as major vessels. A questionnaire was distributed amongst 50 trainees in order to assess benefit of the model. Specifically, confidence, operative skills, and transferable procedural-based learning were assessed.ResultsTraining with this cadaveric model resulted in a statistically significant improvement in self-reported confidence (p < 0.005) and prepared trainees for unsupervised bench work (p < 0.005). Respondents felt that the injected model allowed easier identification of vessels and ultimately increased the similarity to real-time operating. Our analysis showed it cost £10.78 and took 30 min.ConclusionsPerfusion of cadaveric limbs is both cost- and time-effective, with significant improvement in training potential. The model is easily reproducible and could be a valuable resource in surgical training for several disciplines.Level of Evidence: Not ratable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.