We present a new, updated version of the EuclidEmulator (called EuclidEmulator2), a fast and accurate predictor for the nonlinear correction of the matter power spectrum. 2 per cent-level accurate emulation is now supported in the eight-dimensional parameter space of w0waCDM+∑mν models between redshift z = 0 and z = 3 for spatial scales within the range 0.01 h Mpc−1 ≤ k ≤ 10 h Mpc−1. In order to achieve this level of accuracy, we have had to improve the quality of the underlying N-body simulations used as training data: (i) we use self-consistent linear evolution of non-dark matter species such as massive neutrinos, photons, dark energy and the metric field, (ii) we perform the simulations in the so-called N-body gauge, which allows one to interpret the results in the framework of general relativity, (iii) we run over 250 high-resolution simulations with 30003 particles in boxes of 1(h−1 Gpc)3 volumes based on paired-and-fixed initial conditions and (iv) we provide a resolution correction that can be applied to emulated results as a post-processing step in order to drastically reduce systematic biases on small scales due to residual resolution effects in the simulations. We find that the inclusion of the dynamical dark energy parameter wa significantly increases the complexity and expense of creating the emulator. The high fidelity of EuclidEmulator2 is tested in various comparisons against N-body simulations as well as alternative fast predictors like HALOFIT, HMCode and CosmicEmu. A blind test is successfully performed against the Euclid Flagship v2.0 simulation. Nonlinear correction factors emulated with EuclidEmulator2 are accurate at the level of $1{{\ \rm per\ cent}}$ or better for 0.01 h Mpc−1 ≤ k ≤ 10 h Mpc−1 and z ≤ 3 compared to high-resolution dark matter only simulations. EuclidEmulator2 is publicly available at https://github.com/miknab/EuclidEmulator2.
Weak lensing has become an increasingly important tool in cosmology and the use of galaxy shapes to measure cosmic shear has become routine. The weak-lensing distortion tensor contains two other effects in addition to the two components of shear: the convergence and rotation. The rotation mode is not measurable using the standard cosmic shear estimators based on galaxy shapes, as there is no information on the original shapes of the images before they were lensed. Due to this, no estimator has been proposed for the rotation mode in cosmological weak-lensing surveys, and the rotation mode has never been constrained. Here, we derive an estimator for this quantity, which is based on the use of radio polarisation measurements of the intrinsic position angles of galaxies. The rotation mode can be sourced by physics beyond ΛCDM, and also offers the chance to perform consistency checks of ΛCDM and of weak-lensing surveys themselves. We present simulations of this estimator and show that, for the pedagogical example of cosmic string spectra, this estimator could detect a signal that is consistent with the constraints from Planck. We examine the connection between the rotation mode and the shear B-modes and thus how this estimator could help control systematics in future radio weak-lensing surveys.
We develop a method for performing a weak lensing analysis using only measurements of galaxy position angles. By analysing the statistical properties of the galaxy orientations given a known intrinsic ellipticity distribution, we show that it is possible to obtain estimates of the shear by minimizing a χ 2 statistic. The method is demonstrated using simulations where the components of the intrinsic ellipticity are taken to be Gaussian distributed. Uncertainties in the position angle measurements introduce a bias into the shear estimates which can be reduced to negligible levels by introducing a correction term into the formalism. We generalize our approach by developing an algorithm to obtain direct shear estimators given any azimuthally symmetric intrinsic ellipticity distribution. We introduce a method of measuring the position angles of the galaxies from noisy pixelized images, and propose a method to correct for biases which arise due to pixelization and correlations between measurement errors and galaxy ellipticities. We also develop a method to constrain the sample of galaxies used to obtain an estimate of the intrinsic ellipticity distribution such that fractional biases in the resulting shear estimates are below a given threshold value. We demonstrate the angle only method by applying it to simulations where the ellipticities are taken to follow a log-normal distribution. We compare the performance of the position angle only method with the standard method based on full ellipticity measurements by reconstructing lensing convergence maps from both numerical simulations and from the CFHTLenS data. We find that the difference between the convergence maps reconstructed using the two methods is consistent with noise.
We discuss methods for performing weak lensing using radio observations to recover information about the intrinsic structural properties of the source galaxies. Radio surveys provide unique information that can benefit weak lensing studies, such as HI emission, which may be used to construct galaxy velocity maps, and polarized synchrotron radiation; both of which provide information about the unlensed galaxy and can be used to reduce galaxy shape noise and the contribution of intrinsic alignments. Using a proxy for the intrinsic position angle of an observed galaxy, we develop techniques for cleanly separating weak gravitational lensing signals from intrinsic alignment contamination in forthcoming radio surveys. Random errors on the intrinsic orientation estimates introduce biases into the shear and intrinsic alignment estimates. However, we show that these biases can be corrected for if the error distribution is accurately known. We demonstrate our methods using simulations, where we reconstruct the shear and intrinsic alignment auto and cross-power spectra in three overlapping redshift bins. We find that the intrinsic position angle information can be used to successfully reconstruct both the lensing and intrinsic alignment power spectra with negligible residual bias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.