This study aims to develop a method for on-site metallography, enabling the characterization of carbide banding in cold-work steels via cellulose acetate film replication. It will be demonstrated that for this purpose, it is sufficient to grind the sample surface using P1500 mesh SiC abrasive paper and etch it with V2A etchant or nitric acid for 7 minutes. By sample preparation and etching, the matrix of the parent material is sufficiently removed for the carbides to leave a “negative” impression on the film. This negative replica can then be studied under reflected light microscope, enabling the characterization of carbide banding.
In this work, the possibility of manufacturing complex-shaped components from a carbon-martensitic hardenable cold-work steel (1.2379; X153CrMoV12; D2) is investigated. For this purpose, cube-shaped samples with an edge length of 10 mm were produced using the fused-filament fabrication process, which were post-compacted after solvent debinding by supersolidus liquid-phase sintering. Using the knowledge of liquid phase volume content as a function of temperature, supersolidus liquid phase sintering experiments were performed. The microstructure formation process was characterized by electron microscopy and X-ray diffraction. The microstructure and hardness of the processed samples were compared in the heat-treated condition with the properties of the same steel 1.2379 (X153CrMoV12; D2) in the as-cast, deformed and heat-treated condition. The results demonstrate effective post-densificationc close to theoretical density of cold-work tool steel samples fabricated by fused-filamet fabrication using supersolidus liquid-phase sintering at 1280 °C. The defect-free microstructure in the heat-treated state is characterized by a martensitic matrix and eutectic Cr-rich M7 C3 and small amounts of V-rich MC carbides. The hardness of the annealed Supersolidus liquid phase sintering samples are 681 ± 5 HV10, which is above the level of the reference material 1.2379 (629 ± 7 HV10) in the as-cast, formed and heat-treated condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.