Pulmonary vein (PV) cardiomyocytes play an important role in atrial fibrillation; however, little is known about their specific cellular electrophysiological properties. We applied standard microelectrode recording and whole-cell patch-clamp to evaluate action potentials and ionic currents in canine PVs and left atrium (LA) free wall. Resting membrane potential (RMP) averaged -66 +/- 1 mV in PVs and -74 +/- 1 mV in LA (P < 0.0001) and action potential amplitude averaged 76 +/- 2 mV in PVs vs. 95 +/- 2 mV in LA (P < 0.0001). PVs had smaller maximum phase 0 upstroke velocity (Vmax: 98 +/- 9 vs. 259 +/- 16 V s(-1), P < 0.0001) and action potential duration (APD): e.g. at 2 Hz, APD to 90% repolarization in PVs was 84 % of LA (P < 0.05). Na+ current density under voltage-clamp conditions was similar in PV and LA, suggesting that smaller Vmax in PVs was due to reduced RMP. Inward rectifier current density in the PV cardiomyocytes was approximately 58% that in the LA, potentially accounting for the less negative RMP in PVs. Slow and rapid delayed rectifier currents were greater in the PV (by approximately 60 and approximately 50 %, respectively), whereas transient outward K+ current and L-type Ca2+ current were significantly smaller (by approximately 25 and approximately 30%, respectively). Na(+)-Ca(2+)-exchange (NCX) current and T-type Ca2+ current were not significantly different. In conclusion, PV cardiomyocytes have a discrete distribution of transmembrane ion currents associated with specific action potential properties, with potential implications for understanding PV electrical activity in cardiac arrhythmias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.