Summaryobjectives To develop rapid monitoring tools to detect the F1534C permethrin-resistance mutation in domain IIIS6 of the Aedes aegypti voltage-gated sodium channel gene and determine the frequency and distribution of this mutation in Thailand.methods A TaqMan SNP genotyping and an allele specific PCR (AS-PCR) assay were developed and validated by comparison with DNA sequencing of homozygous susceptible and homozygous resistant laboratory strains, their reciprocal-cross progenies, and field-caught mosquitoes. To determine the resistance phenotype of wild-caught A. aegypti, mosquitoes were exposed to 0.75% permethrin paper. The AS-PCR assay was used to screen 619 individuals from 20 localities throughout Thailand.results Overall, both assays gave results consistent with DNA sequencing for laboratory strains of known genotype and for wild-caught A. aegypti. The only slight discrepancy was for the AS-PCR method, which overestimated the mutant allele frequency by 1.8% in wild-caught samples. AS-PCR assays of permethrin-exposed samples show that the mutant C1534 allele is very closely associated with the resistant phenotype. However, 19 permethrin-resistant individuals were homozygous for the wildtype F1534 allele. DNA sequencing revealed all these individuals were homozygous for two other mutations in domain II, V1016G and S989P, which are known to confer resistance (Srisawat et al. 2010). The F1534C mutation is widespread in Thailand with mutant allele frequencies varying among populations from 0.20 to 1.00.conclusions These assays can be used for the rapid detection of the F1534C resistance mutation in A. aegypti populations. The F1534C, and other, mutations underlie an extremely high prevalence of pyrethroid resistance in Thailand.
Two cDNA species, aggst1-5 and aggst1-6, comprising the entire coding region of two distinct glutathione S-transferases (GSTs) have been isolated from a 1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane (DDT) resistant strain (ZANDS) of Anopheles gambiae. The nucleotide sequences of these cDNA species share 80.2% identity and their derived amino acid sequences are 82.3% similar. They have been classified as insect class I GSTs on the basis of their high sequence similarity to class I GSTs from Drosophila melanogaster and Musca domestica and they are localized to a region of an An. gambiae chromosome known to contain further class I GSTs. The genes aggst1-5 and aggst1-6 were expressed at high levels in Escherichia coli and the recombinant GSTs were purified by affinity chromatography and characterized. Both agGST1-5 and agGST1-6 showed high activity with the substrates 1-chloro-2,4-dinitrobenzene and 1, 2-dichloro-4-nitrobenzene but negligible activity with the mammalian theta class substrates, 1,2-epoxy-3-(4-nitrophenoxy)propane and p-nitrophenyl bromide. Despite their high level of sequence identity, agGST1-5 and agGST1-6 displayed different kinetic properties. Both enzymes were able to metabolize DDT and were localized to a subset of GSTs that, from earlier biochemical studies, are known to be involved in insecticide resistance in An. gambiae. This subset of enzymes is one of three in which the DDT metabolism levels are elevated in resistant insects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.