Previous studies from our laboratory showed that B 10.A mice are high responders to pigeon cytochrome c fragment 81-104, whereas B 10.A(5R) mice are low responders. In the present studies, the C-terminal cyanogen bromide cleavage fragment and homologous synthetic peptides of tobacco horn worm moth cytochrome c were shown to be immunogenic in both B10.A and B10.A(5R) mice. These strains, however, showed different patterns of cross-reactivity when immune lymph node T cells were stimulated with cytochrome c fragments from other species. To examine the two patterns of responsiveness at a clonal level, cytochrome c fragment-specific T cell hybridomas were made and found to secrete interleukin 2 in response to antigen. The patterns of cross- reactivity of these B 10.A and B 10.A(5R) clones were similar to that seen in the whole lymph node population. Surprisingly, when these clones were tested for major histocompatibility complex (MHC)-restricted antigen recognition, they were all found to respond to antigen with both B10.A and B10.A(5R) antigen-presenting cells (APC). Furthermore, the cross-reactivity pattern appeared to be largely determined by the genotype of the APC, not the genotype of the T cell clone. That is, a given T cell clone displayed a different fine specificity when assayed with B10.A or B10.A(5R) APC. This observation indicates that the APC MHC gene product and antigen interact during the stimulation of the T cell response and that as a consequence the specificity of antigen-induced T cell activation is influenced by these MHC gene products. (During the preparation of this manuscript it has come to our attention that results similar to our own, concerning the fine specificity of cytotoxic T cell clones, have been obtained by Dr. T. R. Hunig and Dr. M. J. Bevan, Massachusetts Institute of Technology, Boston, MA. T. R. Hunig and M. J. Bevan. 1981. Specificity of T-cell clones illustrates altered self hypothesis. Nature. 294:460.)
A series of experiments were performed to explore the role of complementing major histocompatability complex (MHC)-linked immune response Ir genes in the murine T cell proliferative response to the globular protein antigen pigeon cytochrome c. The functional equivalence of I-E-subregion-encoded, structurally homologous E(a) chains from different haplotypes bearing the serologic specificity Ia.7 was demonstrated by the complementation for high responsiveness to pigeon cytochrome c of F(1) hybrids between low responder B 10.A(4R) (I-A (k)) or B 10.S (I-A(8)) mice and four low responder E(a)- bearing haplotypes. Moreover, this Ir gene function correlated directly with both the ability of antigen-pulsed spleen cells from these same F(1) strains to stimulate pigeon cytochrome c-primed T cells from B10.A or B10.S(9R) mice, and with the cell surface expression of the two-chain Ia antigenic complex, A(e):E(a), bearing the conformational or combinatorial determinant recognized by the monoclonal anti-Ia antibody, Y-17. The B 10.PL strain (H-2(u)), which expresses an Ia.7-positive I-E- subregion-encoded E(a) chain, failed to complement with B10.A(4R) or B10.S mice in the response to pigeon cytochrome c. However, (B10.A(4R) × B10.PL)F(1) and (B10.S × B10.PL)F(1) mice do express A(k)(e):E(u)(a) and A(8)(e):E(u)(a) on their cell surface, although in reduced amounts relative to A(k,s)(e):E(k,d,p,r)(a) complexes found in corresponding F(1) strains. This quantitative difference in Ia antigen expression correlated with a difference in the ability to present pigeon cytochrome c to B 10.A and B 10.S(9R) long-term T cell lines. Thus, (B10.A(4R) × B10.PL)F(1) spleen cells required a 10-fold higher antigen dose to induce the same stimulation as (B10.A(4R) × B10.D2)F(1) spleen cells. In addition, the monoclonal antibody, Y-17, which reacts with A(e):E(a) molecules of several strains, had a greater inhibitory effect on the proliferative response to pigeon cytochrome c of B10.A T cells in the presence of (B10.A(4R) X B10.PL)F(1) spleen cells than in the presence of (B10.A(4R) X B10.D2)F(1) spleen cells. These functional data, in concert with the biochemical and serological data in the accompanying report, are consistent with the molecular model for Ir gene complementation in which appropriate two-chain Ia molecules function at the antigen-presenting cell (APC) surface as restriction elements. Moreover, they clearly demonstrate that the magnitude of the T cell proliferative response is a function of both the concentration of nominal antigen and of the amount of Ia antigen expressed on the APC. Finally, the direct correlation of a quantitative deficiency in cell surface expression of an Ia antigen with a corresponding relative defect in antigen-presenting function provides strong independent evidence that the I-region-encoded Ia antigens are the products of the MHC-linked Ir genes.
The existence of T cells specific for soluble antigens in association with unique F(1) or recombinant major histocompatibility complex (MHC) gene products was first postulated from studies on the proliferative response of whole T cell populations to the antigen poly(Glu(55)Lys(36)Phe(9))(n) (GLφ). In this paper we use the newly developed technology of T lymphocyte cloning to establish unequivocally the existence of such cells specific for GLφ and to generalize their existence by showing that F(1)- specific cells can be isolated from T cell populations primed to poly(Glu(60)Ala(30)Tyr(10))(n) (GAT) where such clones represent only a minor subpopulation of cells. Gl.4b-primed B10.A(5R) and GAT-primed (B10.A × B10)F(1) lymph node T cells were cloned in soft agar, and the colonies that developed were picked and expanded in liquid culture. The GLφ-specific T cells were then recloned under conditions of high-plating efficiency to ensure that the final colonies originated from single cells. T cells from such rigorously cloned populations responded to stimulation with GILφ but only in the presence of nonimmune, irradiated spleen cells bearing (B10.A × B10)F(1) or the syngeneic B 10.A(5R) recombinant MHC haplotype. Spleen cells from either the B10 or B 10.A parental strains failed to support a proliferative response, even when added together. (B10 × B10.D2)F(1) and (B10 × B10.RIII)F(1) spleen cells also supported a proliferative response but (B10 × B10.Q)F(1) and (B10 X B10.S)F(1) spleen cells did not. These results suggested that the T cell clones were specific for GL[phi} in association with the β(AE)(b)-α(E) (k,d,r,) Ia molecule and that recognition required both gene products to be expressed in the same antigen-presenting cells. Support for this interpretation was obtained from inhibition experiments using the monoclonal antibody Y-17 specific for a determinant on the β(AE)(b)-αE Ia molecule. Y-17 completely inhibited the proliferative response of a GLφ-specific clone but had no effect on the response of either a PPD-specific or GAT-specific clone, both of which required the β(A)-α(A) Ia molecule as their restriction element. No evidence could be found for the involvement of suppressor T cells in this inhibition. We therefore conclude that the phenomenon of F(1)-restricted recognition by proliferating T cells results from the presence of antigen- specific clones that must recognize unique F(1) or recombinant Ia molecules on the surface of antigen-presenting cells in addition to antigen in order to be stimulated.
The T cell receptor repertoire for self major histocompatibility complex (MHC) ~ antigens and the Ir gene phenotype of responding T cells are not genetically determined but are acquired during ontogeny and are dictated by the MHC gene products of the host in which the T cells mature (1-3). The host element that determines the T cell self-recognition repertoire is the subject of much controversy, particularly when one considers separately the two major subsets of T cells, the H-2 K/D region-specific cytotoxic T lymphocytes (CTL) and the I region-restricted proliferating and helper T cells. On the one hand, studies with radiation-induced bone marrow (BM) chimeras or thymus-engrafted nude mice have indicated that peripheral T cells, both K/D and I region specific, recognize conventional antigens (Ag) in association with thymic MHC gene products (4-11), supporting a role for the thymus in the development of the MHC restriction specificity of T cells. However, several other investigations have failed to confirm such a unique role for the thymus. First, in radiation-induced BM chimeras, peripheral CTL with self-specificity for both thymic and extrathymic H-2 K/D Ag were observed (12-15). In vitro generation of CTL restricted to extrathymic K/D determinants was dependent on the addition of an exogenous source of T cell help (interleukin 2 [IL-2]) (13) or antigen-presenting cells (APC) carrying thymic H-2 I region determinants (12). Second, in congenitally athymic nude mice engrafted with an allogeneic thymus, splenic CTL with self-recognition specificity for both thymic and extrathymic (i.e., nude host) H-2 K/D Ag were observed (16). Again, in vitro generation of peripheral CTL specific for extrathymic K/D Ag was dependent on the addition of IL-2, while the generation of CTL restricted to thymic K/D determinants was not (16). The CTL system used in these studies, a trinitrophenyl (TNP)-modified self response, was shown
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.