The chemical degradation of alloy components in sulfur-containing environments is a major concern in oil and gas production. This paper discusses the effect of elemental sulfur and its simplest anion, sulfide, on the corrosion of Cr-Mo alloy steel at pH 2 and 5 during 10, 20 and 30 h immersion in two different solutions. 4130 Cr-Mo alloy steel is widely used as tubing and tubular components in sour services. According to the previous research in aqueous conditions, contact of solid sulfur with alloy steel can initiate catastrophic corrosion problems. The corrosion behavior was monitored by the potentiodynamic polarization technique during the experiments. Energy dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM) have been applied to characterize the corrosion product layers after each experiment. The results show that under the same experimental conditions, the corrosion resistance of Cr-Mo alloy in the presence of elemental sulfur is significantly lower than its resistance in the presence of sulfide ions.
The corrosion resistance and corrosion products of 4130 alloy steel have been investigated by depositing thin films of iron sulfide synthesized from an acidic chemical bath. Tests were conducted at varying temperatures (25 ∘ C-75 ∘ C), pH levels (2-4), and immersion time (24-72 hours). The corrosion behavior was monitored by linear polarization resistance (LPR) method. X-ray Diffraction (XRD), Energy Dispersive X-ray (EDX) spectroscopy, and Scanning Electron Microscopy (SEM) have been applied to characterize the corrosion products. The results show that, along with the formation of an iron sulfide protective film on the alloy surface, increasing temperature, increasing immersion time, and decreasing pH all directly increase the corrosion rate of steel in the tested experimental conditions. It was also concluded that increasing temperature causes an initial increase of the corrosion rate followed by a large decrease due to transformation of the iron sulfide crystalline structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.