We examined for the presence of trypanosomes in blood samples from 259 anurans (47 species from 8 families), the majority of which were from the Brazilian Amazonia, Atlantic Forest and Pantanal biomes. Trypanosomes were detected by a combination of microhaematocrit and haemoculture methods in 45% of the anurans, and 87 cultures were obtained: 44 from Hylidae, 22 from Leptodactylidae, 15 from Bufonidae, 5 from Leiuperidae and 1 from an unidentified anuran. High morphological diversity (11 morphotypes) was observed among blood trypanosomes from anurans of different species and of the same species as well as among trypanosomes from the same individual. Conversely, morphologically similar trypanosomes were found in anurans from distinct species and biomes. ITS and SSU rDNA polymorphisms revealed high diversity among the 82 isolates examined. Twenty-nine genotypes could be distinguished, the majority distributed in 11 groups. Phylogenetic relationships based on rDNA sequences indicated that isolates from more phylogenetically related anurans are more closely related. Comparison of anuran trypanosomes from Brazil and other countries revealed several new species among the isolates examined in this study. Phylogenetic relationships suggest that host restriction, host switching and overall ecogeographical structure may have played a role in the evolution of the anuran trypanosomes.
BackgroundLittle is known about the diversity, phylogenetic relationships, and biogeography of trypanosomes infecting non-mammalian hosts. In this study, we investigated the influence of host species and biogeography on shaping the genetic diversity, phylogenetic relationship, and distribution of trypanosomes from South American alligatorids and African crocodilids.MethodsSmall Subunit rRNA (SSU rRNA) and glycosomal Glyceraldehyde Phosphate Dehydrogenase (gGAPDH) genes were employed for phylogenetic inferences. Trypanosomes from crocodilians were obtained by haemoculturing. Growth behaviour, morphology, and ultrastructural features complement the molecular description of two new species strongly supported by phylogenetic analyses.ResultsThe inferred phylogenies disclosed a strongly supported crocodilian-restricted clade comprising three subclades. The subclade T. grayi comprised the African Trypanosoma grayi from Crocodylus niloticus and tsetse flies. The subclade T. ralphi comprised alligatorid trypanosomes represented by Trypanosoma ralphi n. sp. from Melanosuchus niger, Caiman crocodilus and Caiman yacare from Brazilian river basins. T. grayi and T. ralphi were sister subclades. The basal subclade T. terena comprised alligatorid trypanosomes represented by Trypanosoma terena n. sp. from Ca. yacare sharing hosts and basins with the distantly genetic related T. ralphi. This subclade also included the trypanosome from Ca. crocodilus from the Orinoco basin in Venezuela and, unexpectedly, a trypanosome from the African crocodilian Osteolaemus tetraspis.ConclusionThe close relationship between South American and African trypanosomes is consistent with paleontological evidence of recent transoceanic dispersal of Crocodylus at the Miocene/Pliocene boundaries (4–5 mya), and host-switching of trypanosomes throughout the geological configuration of South American hydrographical basins shaping the evolutionary histories of the crocodilians and their trypanosomes.
Blood examination by microhaematocrit and haemoculture of 459 snakes belonging to 37 species revealed 2.4% trypanosome prevalence in species of Viperidae (Crotalus durissus and Bothrops jararaca) and Colubridae (Pseudoboa nigra). Trypanosome cultures from C. durissus and P. nigra were behaviourally and morphologically indistinguishable. In addition, the growth and morphological features of a trypanosome from the sand fly Viannamyia tuberculata were similar to those of snake isolates. Cross-infection experiments revealed a lack of host restriction, as snakes of 3 species were infected with the trypanosome from C. durissus. Phylogeny based on ribosomal sequences revealed that snake trypanosomes clustered together with the sand fly trypanosome, forming a new phylogenetic lineage within Trypanosoma closest to a clade of lizard trypanosomes transmitted by sand flies. The clade of trypanosomes from snakes and lizards suggests an association between the evolutionary histories of these trypanosomes and their squamate hosts. Moreover, data strongly indicated that these trypanosomes are transmitted by sand flies. The flaws of the current taxonomy of snake trypanosomes are discussed, and the need for molecular parameters to be adopted is emphasized. To our knowledge, this is the first molecular phylogenetic study of snake trypanosomes.
We sequenced the small subunit (SSU) rRNA and glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) genes of two trypanosomes isolated from the Brazilian snakes Pseudoboa nigra and Crotalus durissus terrificus. Trypanosomes were cultured and their morphometrical and ultrastructural features were characterized by light microscopy and scanning and transmission electron microscopy. Phylogenetic trees inferred using independent or combined SSU rRNA and gGAPDH data sets always clustered the snake trypanosomes together in a clade closest to lizard trypanosomes, forming a strongly supported monophyletic assemblage (i.e. lizard-snake clade). The positioning in the phylogenetic trees and the barcoding based on the variable V7-V8 region of the SSU rRNA, which showed high sequence divergences, allowed us to classify the isolates from distinct snake species as separate species. The isolate from P. nigra is described as a new species, Trypanosoma serpentis n. sp., whereas the isolate from C. d. terrificus is redescribed here as Trypanosoma cascavelli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.