A major challenge for humanity in the twenty-first century is to combine energy with respect for the environment. During the Rio Earth Summit (2012) the issue of sustainable development was clearly demonstrated. One of the major battles this century for the planet's survival is to include energy efficiency as an international policy priority in order to achieve a significant decrease in greenhouse gas emissions. In this paper, we have presented the current state and outlook of energy efficiency in the transport, residential and industrial sectors, as well as its policy for each sector in Morocco. New strategies implemented by the government for sustainable development were reviewed and discussed. Through these strategies, the shift to energy efficiency is at the forefront of national policy implications for energy security and a low-carbon economy.
Accurate and rapid crop type mapping is critical for agricultural sustainability. The growing trend of cloud-based geospatial platforms provides rapid processing tools and cloud storage for remote sensing data. In particular, a variety of remote sensing applications have made use of publicly accessible data from the Sentinel missions of the European Space Agency (ESA). However, few studies have employed these data to evaluate the effectiveness of Sentinel-1, and Sentinel-2 spectral bands and Machine Learning (ML) techniques in challenging highly heterogeneous and fragmented agricultural landscapes using the Google Earth Engine (GEE) cloud computing platform. This work aims to map, accurately and early, the crop types in a highly heterogeneous and fragmented agricultural region of the Tadla Irrigated Perimeter (TIP) as a case study using the high spatiotemporal resolution of Sentinel-1, Sentinel-2, and a Random Forest (RF) classifier implemented on GEE. More specifically, five experiments were performed to assess the optical band reflectance values, vegetation indices, and SAR backscattering coefficients on the accuracy of crop classification. Besides, two scenarios were used to assess the monthly temporal windows on classification accuracy. The findings of this study show that the fusion of Sentinel-1 and Sentinel-2 data can accurately produce the early crop mapping of the studied area with an Overall Accuracy (OA) reaching 95.02%. The scenarios prove that the monthly time series perform better in terms of classification accuracy than single monthly windows images. Red-edge and shortwave infrared bands can improve the accuracy of crop classification by 1.72% when compared to only using traditional bands (i.e., visible and near-infrared bands). The inclusion of two common vegetation indices (The Normalized Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI)) and Sentinel-1 backscattering coefficients to the crop classification enhanced the overall classification accuracy by 0.02% and 2.94%, respectively, compared to using the Sentinel-2 reflectance bands alone. The monthly windows analysis indicated that the improvement in the accuracy of crop classification is the greatest when the March images are accessible, with an OA higher than 80%.
In Morocco, monitoring and estimation of wheat yield at the regional and national scales are critical issues for national food security. The recent Sentinel-2 imagery offers potential for managing grain production systems on a field and regional level. The present study was planned based on a time series of six remote sensing indices and Multiple Linear Regression (MLR) methods for real-time estimation of wheat yield using the Google Earth Engine (GEE) platform in a highly heterogeneous and fragmented agricultural region, such as the Tadla Irrigated Perimeter (TIP). First, the spatial distribution of wheat in the TIP region was mapped by performing Random Forest (RF) classification of Sentinel 2 images. Following that, using MLR models, the wheat yield of nine sampled fields was estimated for the different phenological stages of wheat. The yield measured in-situ was the independent variable of the regressions. The dependent variables included the remote sensing indices derived from Sentinel-2. The remote sensing index and the phenological period of the greatest model were investigated to estimate and map the wheat yield in the entire study area. The RF generated the wheat mapping of the study area with an overall accuracy (OA) of 93.82%. Furthermore, the coefficient of determination (R2) of the tested MLR was from 0.53 to 0.89, while the Root Mean Square Error (RMSE) varied from 4.29 to 7.78 q ha−1. The best model was the one that uses the Green Normalized Difference Vegetation Index (GNDVI) in the tillering and maturity stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.