Wireless sensor networks (WSNs) are increasingly being used for data monitoring and collection purposes. Typically, they consist of a large number of sensor nodes that are used remotely to collect data about the activities and conditions of a particular area, for example, temperature, pressure, motion. Each sensor node is usually small, inexpensive, and relatively easy to deploy compared to other sensing methods. For this reason, WSNs are used in a wide range of applications and industries. However, WSNs are vulnerable to different kinds of security threats and attacks. This is primarily because they are very limited in resources like power, storage, bandwidth, and processing power that could have been used in developing their defense. To ensure their security, an effective Intrusion detection system (IDS) need to be in place to detect these attacks even under these constraints. Today, traditional IDS are less effective as these malicious attacks are becoming more intelligent, frequent, and complex. Denial of service (DOS) attack is one of the main types of attacks that threaten WSNs. For this reason, we review related works that focus on detecting DoS attacks in WSN. In addition, we developed and implemented several Deep learning (DL) based IDS. These systems were trained on a specialized dataset for WSNs called WSN-DS in detecting four types of DoS attacks that affects WSNs. They include the Blackhole, Grayhole, Flooding, and Scheduling attacks. Finally, we evaluated and compared the results and we discuss possible future works.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.