The influence of aggregate size on the degradation process of material exposed to high temperatures is not a consensus among the scientific community because changes in the microstructure impact the macrostructural performance. To contribute to this investigation this work presents a thermomechanical model to evaluate aggregate size influence on the concrete mechanical damage under high temperatures. The material is considered as two-phase - aggregate and matrix - and three-phase - in which the interfacial transition zone is added. Concerning geometries, models in 2D and 3D are simulated. A finite element software is used with a weak coupling strategy that reduces the computational cost, and a user subroutine is implemented to define the constitutive model. The results show that the aggregate size influences both the average damage and the damage distribution along the synthetic specimen.
Concrete is a widespread material all over the world. Due to this material’s heterogeneity and structural complexity, predicting the behavior of concrete structures under extreme environmental conditions is a very challenging task. High temperatures lead to microstructural changes which affect the macrostructural performance. In this context, computational tools that allow the simulation of structures may assist the analysis, by reproducing varied situations of thermal and mechanical loading and boundary conditions. In order to contribute to this scenario, this study proposes a numerical methodology to simulate the thermomechanical behavior of concrete under temperature gradients, through inverse analyses and a user subroutine implemented in Abaqus software. Thermal loading effects were considered as loading data for a damage model. Experimental data available in the literature was adopted for adjustment and validation purposes. The preliminary results presented herein encourage further improvements so as to allow realistic simulations of such an important aspect of concrete’s behavior.
O concreto é um material compósito amplamente utilizado na indústria da construção civil. Aliado à armadura de aço, apresenta características mecânicas favoráveis ao emprego nos mais diversos elementos estruturais tais como fundações, vigas, lajes, pilares e barragens, por exemplo. Apesar de sua ampla utilização, a resposta do material diante de situações extremas - como sob temperaturas elevadas - é bastante complexa uma vez que, nestes casos, ocorrem alterações microestruturais que impactam em suas propriedades macroscópicas. Neste contexto, o emprego de ferramentas computacionais que permitam a simulação de diferentes estruturas e situações de carregamento é uma estratégia interessante para a verificação do desempenho do material em cada cenário. Sendo assim, este trabalho pretende simular o comportamento mecânico do concreto considerando situações de solicitação usual bem como situações de solicitação térmica, com o objetivo de avaliar o impacto desta última sobre o material. Para isso, scripts Python são utilizados para a geração da geometria, um software de elementos finitos é empregado no pré e no pós-processamento e uma subrotina de usuário, desenvolvida em Fortran e que descreve o modelo de dano de Mazars, é utilizada em conjunto com o referido software na fase de processamento.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.