The influence of aggregate size on the degradation process of material exposed to high temperatures is not a consensus among the scientific community because changes in the microstructure impact the macrostructural performance. To contribute to this investigation this work presents a thermomechanical model to evaluate aggregate size influence on the concrete mechanical damage under high temperatures. The material is considered as two-phase - aggregate and matrix - and three-phase - in which the interfacial transition zone is added. Concerning geometries, models in 2D and 3D are simulated. A finite element software is used with a weak coupling strategy that reduces the computational cost, and a user subroutine is implemented to define the constitutive model. The results show that the aggregate size influences both the average damage and the damage distribution along the synthetic specimen.
O concreto é uma mistura hábil de componentes comuns da superfície terrestre, o que, associado ao fato de não requerer mão de obra altamente qualificada para sua produção e ao seu bom desempenho térmico e mecânico, o torna o material construtivo mais utilizado pelo homem. Nesse contexto, o desenvolvimento urbano e a consequente evolução da construção civil proporcionaram uma crescente sofisticação das estruturas de concreto, implicando em solicitações de uso cada vez mais severas, como é o caso da submissão a gradientes térmicos, que pode fazer parte da condição de uso da estrutura, e estar prevista em projeto, ou ocorrer de forma acidental através de incêndios. Sendo assim, é necessário desenvolver modelos realistas, capazes de prever com confiabilidade, o comportamento dessas estruturas. Porém, esse não é um processo simples, uma vez que esse material apresenta uma microestrutura altamente complexa e heterogênea, o que aliado aos mecanismos de fissuração, resulta no seu comportamento não linear. Visando contribuir com este cenário, foi analisado computacionalmente o comportamento termomecânico de estruturas de concreto submetidas a altas temperaturas, empregando um conjunto de dados experimentais fornecidos pela Universidade Cergy-Pontoise, na França. Para isso, foram gerados corpos de prova sintéticos bidimensionais e tridimensionais, a partir dos quais foram feitas simulações utilizando o programa comercial de elementos finitos Abaqus e seu recurso de subrotinas. Através da implementação do modelo de dano de Mazars (1984), foi avaliada a evolução do dano, comparando os resultados das geometrias consideradas, constatando-se a congruência entre as mesmas. Para tal, foram utilizados problemas inversos para obtenção de parâmetros e propriedades desconhecidas, e foram desenvolvidos três modelos, sendo um elástico, um térmico e um termomecânico. Posteriormente, foi realizado o estudo da influência dos parâmetros do modelo de dano de Mazars (1984) na evolução do módulo de Young. Por fim, foi avaliado o impacto da granulometria e do volume relativo dos agregados no processo de danificação do concreto. Os resultados obtidos atestaram a eficácia da metodologia proposta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.