In order to maximize the electric energy production of a photovoltaic generator (PVG), the maximum power point tracking (MPPT) methods are usually used in photovoltaic systems. The principle of these techniques is to operate the PVG to the maximum power point (MPP), which depends on the environmental factors, such as solar irradiance and ambient temperature, ensuring the optimal power transfer between PVG and load. In this paper, we present the implementation of two digital MPPT commands using the Arduino Mega type. The two proposed MPPT controls are based on the algorithm of perturb and observe (P&O), the first one with fixed perturbation step and the second one with two perturbations step varying with some conditions. The experimental results show that the P&O algorithm with variable step perturbation gives good results compared to the P&O algorithm with fixed perturbation step in terms of the time response and the oscillations around the MPP.
<p>In the present paper, we will attempt to predict the <em>I<sub>pv</sub>-V<sub>pv</sub></em> output characteristic of a photovoltaic generator (<em>PVG</em>) and consequently the generated electric power. This will be possible through modeling, extracting the electrical parameters of the <em>PVG</em> under study and also, by estimating the global incident solar radiation, on a surface, first horizontally, and then tilted to a given angle. Mathematical models developed in Matlab, to characterize the studied PVG are validated by experimental data of the PVG manufacture. While models associated with global radiation are validated by measurements taken by the meteorological station installed on the laboratory site <em>ERTAIER</em> (Team for Research in Technology and Advanced Engineering of Renewable Energies) of Higher School of Technology Agadir (ESTA).</p><p> </p>
To understand the electrical behavior of a photovoltaic panel, it is necessary to know the characteristic Ipv = f(Vpv). The best way to obtainthis I-V curve is to use a variable resistor.
This paper proposes a new and simple technique based on a MOSFET transistor as a variable load, which whose gate voltage is controlled by an RC filter from the Arduino. A comparison under standard temperature and illumination conditions between the manufacturer’s datasheet with the simulation by MATLAB/Simulink on the one hand, and on the other hand between the manufacturer’s datasheet with the experimental data for the evaluation of this technique that has been performed.
<p>To detect defects of solar panel and understand the effect of external parameters such as fluctuations in illumination, temperature, and the effect of a type of dust on a photovoltaic (PV) panel, it is essential to plot the Ipv=f(Vpv) characteristic of the PV panel, and the simplest way to plot this I-V characteristic is to use a variable resistor. This paper presents a study of comparison and combination between two methods: capacitive and electronic loading to track I-V characteristic. The comparison was performed in terms of accuracy, response time and instrumentation cost used in each circuit, under standard temperature and illumination conditions by using polycrystalline solar panel type SX330J and monocrystalline solar panels type ET-M53630. The whole system is based on simple components, less expensive and especially widely used in laboratories. The results will be between the datasheet of the manufacturer with the experimental data, refinements and improvements concerning the number of points and the trace time have been made by combining these two methods.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.