About 8,000 years ago in the Fertile Crescent, a spontaneous hybridization of the wild diploid grass Aegilops tauschii (2n 5 14; DD) with the cultivated tetraploid wheat Triticum turgidum (2n 5 4x 5 28; AABB) resulted in hexaploid wheat (T. aestivum; 2n 5 6x 5 42; AABBDD) 1,2 . Wheat has since become a primary staple crop worldwide as a result of its enhanced adaptability to a wide range of climates and improved grain quality for the production of baker's flour 2 . Here we describe sequencing the Ae. tauschii genome and obtaining a roughly 90-fold depth of short reads from libraries with various insert sizes, to gain a better understanding of this genetically complex plant. The assembled scaffolds represented 83.4% of the genome, of which 65.9% comprised transposable elements. We generated comprehensive RNA-Seq data and used it to identify 43,150 protein-coding genes, of which 30,697 (71.1%) were uniquely anchored to chromosomes with an integrated high-density genetic map. Whole-genome analysis revealed gene family expansion in Ae. tauschii of agronomically relevant gene families that were associated with disease resistance, abiotic stress tolerance and grain quality. This draft genome sequence provides insight into the environmental adaptation of bread wheat and can aid in defining the large and complicated genomes of wheat species.We selected Ae. tauschii accession AL8/78 for genome sequencing because it has been extensively characterized genetically (Supplementary Information). Using a whole genome shotgun strategy, we generated 398 Gb of high-quality reads from 45 libraries with insert sizes ranging from 200 bp to 20 kb (Supplementary Information). A hierarchical, iterative assembly of short reads employing the parallelized sequence assembler SOAPdenovo 3 achieved contigs with an N50 length (minimum length of contigs representing 50% of the assembly) of 4,512 bp (Table 1). Paired-end information combined with an additional 18.4 Gb of Roche/454 long-read sequences was used sequentially to generate 4.23-Gb scaffolds (83.4% were non-gapped contiguous sequences) with an N50 length of 57.6 kb (Supplementary Information). The assembly represented 97% of the 4.36-Gb genome as estimated by K-mer analysis (Supplementary Information). We also obtained 13,185 Ae. tauschii expressed sequence tag (EST) sequences using Sanger sequencing, of which 11,998 (91%) could be mapped to the scaffolds with more than 90% coverage (Supplementary Information).To aid in gene identification, we performed RNA-Seq (53.2 Gb for a 117-Mb transcriptome assembly) on 23 libraries representing eight tissues including pistil, root, seed, spike, stamen, stem, leaf and sheath (Supplementary Information). Using both evidence-based and de novo gene predictions, we identified 34,498 high-confidence protein-coding loci. FGENESH 4 and GeneID models were supported by a 60% overlap with either our ESTs and RNA-Seq reads, or with homologous proteins. More than 76% of the gene models had a significant match (E value # 10 25; alignment length $ 60%) in the ...
Y 2 @C 79 N and Tb 2 @C 79 N have been prepared by conducting the Krätschmer-Huffman electric arcprocess under 20 torr of N 2 and 280 torr of He with metal oxide doped graphite rods. These new heterofullerenes were separated from the resulting mixture of empty cage fullerenes and endohedral fullerenes by chemical separation and a two stage chromatographic process. Crystallographic data for Tb 2 @C 79 N • Ni(OEP) • 2C 6 H 6 demonstrate the presence of an 80-atom cage with idealized I h symmetry and two, widely separated Tb atoms inside with a Tb---Tb separation of 3.9020(10) Å for the major terbium sites. The EPR spectrum of the odd-electron Y 2 @C 79 N indicates that the spin density largely resides on the two, equivalent yttrium ions. Computational studies on Y 2 @C 79 N suggest that the nitrogen atom resides at a 665 ring junction in the equator on the fullerene cage and that the unpaired electron is localized in a bonding orbital between the two yttrium ions of this stable radical. Thus, the Tb-Tb bond length of the single-electron bond is the longest metal-metal bond reported so far.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.