The interaction of a drug with its target is critical to achieve drug efficacy. In cases where cellular environment influences target engagement, differences between individuals and cell types present a challenge for a priori prediction of drug efficacy. As such, characterization of environments conducive to achieving the desired pharmacologic outcome is warranted. We recently reported that the clinical CDK4/6 inhibitor palbociclib displays cell type-specific target engagement: Palbociclib engaged CDK4 in cells biologically sensitive to the drug, but not in biologically insensitive cells. Here, we report a molecular explanation for this phenomenon. Palbociclib target engagement is determined by the interaction of CDK4 with CDKN2A, a physiologically relevant protein inhibitor of CDK4. Because both the drug and CDKN2A prevent CDK4 kinase activity, discrimination between these modes of inhi-bition is not possible by traditional kinase assays. Here, we describe a chemo-proteomics approach that demonstrates high CDK4 target engagement by palbociclib in cells without functional CDKN2A and attenuated target engagement when CDKN2A (or related CDKN2/INK4 family proteins) is abundant. Analysis of biological sensitivity in engineered isogenic cells with low or absent CDKN2A and of a panel of previously characterized cell lines indicates that high levels of CDKN2A predict insensitivity to palbociclib, whereas low levels do not correlate with sensitivity. Therefore, high CDKN2A may provide a useful biomarker to exclude patients from CDK4/6 inhibitor therapy. This work exemplifies modulation of kinase target engagement by endogenous proteinaceous regulators and highlights the importance of cellular context in predicting inhibitor efficacy.
CDK4/6 inhibitors combined with endocrine therapy have demonstrated higher antitumor activity than endocrine therapy alone for the treatment of advanced estrogen receptor-positive breast cancer. Some of these tumors are de novo resistant to CDK4/6 inhibitors and others develop acquired resistance. Here, we show that p16 overexpression is associated with reduced antitumor activity of CDK4/6 inhibitors in patient-derived xenografts (n = 37) and estrogen receptor-positive breast cancer cell lines, as well as reduced response of early and advanced breast cancer patients to CDK4/6 inhibitors (n = 89). We also identified heterozygous RB1 loss as biomarker of acquired resistance and poor clinical outcome. Combination of the CDK4/6 inhibitor ribociclib with the PI3K inhibitor alpelisib showed antitumor activity in estrogen receptor-positive non-basal-like breast cancer patient-derived xenografts, independently of PIK3CA, ESR1 or RB1 mutation, also in drug de-escalation experiments or omitting endocrine therapy. Our results offer insights into predicting primary/acquired resistance to CDK4/6 inhibitors and post-progression therapeutic strategies.
Genetic and proteomic markers were analyzed in twenty-eight HER2negative patient-derived xenografts (PDXs) and in patient samples, and correlated to AZD5363 sensitivity as single agent and in combination with paclitaxel.Results: Four PDX were derived from patients receiving AZD5363 in the clinic which exhibited concordant treatment response. Mutations in PIK3CA/AKT1 and absence of mTORC1-activating alterations, e.g. in MTOR or TSC1, were associated with sensitivity to AZD5363 monotherapy. Interestingly, excluding PTEN from the composite biomarker increased its accuracy from 64 to 89%. Moreover, resistant PDXs exhibited low baseline pAKT S473 and residual pS6 S235 upon treatment, suggesting that parallel pathways bypass AKT/S6K1 signaling in these models. We identified two mechanisms of acquired resistance to AZD5363: cyclin D1 overexpression and loss of AKT1 p.E17K. Conclusions:This study provides insight into putative predictive biomarkers of response and acquired resistance to AZD5363 in HER2-negative metastatic breast cancer.
Background: HER3 is overexpressed in 30-50% of breast cancers and has been associated with poor prognosis. Patritumab deruxtecan (HER3-DXd; U3-1402) is a HER3-directed ADC with a potent topoisomerase I (TOP1) inhibitor payload. A phase 1/2 study of HER3-DXd (NCT02980341) demonstrated promising antitumor activity in hormone receptor positive (HR+) metastatic BC patients with clinical activity observed across baseline levels of HER3 protein or mRNA expression. A window of opportunity clinical trial is currently ongoing to evaluate the biological activity of HER3-DXd in patients with treatment naïve BC according to HER3 mRNA/protein expression levels (NCT04610528). Here, we aimed to describe the activity of HER3-DXd in PDX models to identify robust biomarkers of response. Methods: The antitumor activity of HER3-DXd was assessed in 21 BC PDX models (14 HR+ and 7 triple negative). HER3-DXd sensitivity was established as a complete response that lasted longer than 120 days, following 4 weekly doses of 10 mg/kg. HER3-DXd antitumor activity was compared to the antitumor activity of irinotecan (50 mg/kg dosed once weekly), which was evaluated according to modified RECIST criteria in a subset of 14 BC PDX models. PDX models of acquired resistance to HER3-DXd were generated by repeated treatment cycles. Pharmacodynamic (PD) experiments were conducted by collecting tumor samples from PDXs after a single dose of HER3-DXd or irinotecan. Baseline HER3 expression was assessed by immunohistochemistry (IHC) and Western blot. mRNA expression of 72 genes including ERBB3 and genes from the PAM50 signature were measured using the nCounter platform. Two-class unpaired significance analysis of microarrays (SAM), using a false-discovery rate<5%, identified differential gene expression across response groups. Genetic alterations harbored by PDX models were determined using the MSK-IMPACTTM targeted exome panel. Quantification of proliferation (% of Ki67-positive cells) and of DNA damage during the S-phase of the cell cycle (γH2AX nuclear foci in geminin-positive cells) was evaluated in untreated/treated PD samples by IHC or immunofluorescence (IF), respectively. Western blot was used to assess HER3-pathway downmodulation and induction of apoptosis. Results: Eight out of 21 (38%) PDXs were highly sensitive to HER3-DXd, and in 5/14 (36%) models HER3-DXd showed a superior antitumor activity when compared to irinotecan. We observed an enrichment of basal-like models amongst the non-relapsed PDXs, compared to the relapsed ones (6/8 (75%) vs. 3/13 (20%), p=0.0195). Baseline levels of HER3/ERBB3 were not associated with treatment response and a model of acquired-resistance did not exhibit a reduction in baseline HER3 expression. Interestingly, relapsed models showed increased expression of genes related with chemotherapy-resistance (MDM2, NAT1, MAPT, GRB7, BCL-2). Mechanistically, treatment with HER3-DXd did not reduce the level of Ki67-proliferating cells but resulted in a significantly higher induction of S-phase DNA damage measured as γH2AX nuclear foci in non-relapsed models, compared to relapsed ones. This was accompanied by a reduction of HER3 protein levels and downmodulation of pERK1/2 T202/Y204, along with activation of PARP cleavage. Conclusions: HER3-DXd exerts a potent antitumor response in BC PDXs, independently of baseline HER3/ERBB3 levels, in line with the clinical data of NCT02980341. Basal-like tumors were more sensitive to HER3-DXd than luminal B models. Mechanistically, our data suggests that treatment with HER3-DXd results in parallel HER3/ERK signaling downmodulation and induction of S-phase DNA damage, resulting in tumor cell death. Citation Format: Andreu Òdena, Laia Monserrat, Fara Brasó-Maristany, Marta Guzmán, Judit Grueso, Olga Rodríguez, Maurizio Scaltriti, Sarat Chandarlapaty, Yang Qiu, Kumiko Koyama, Mafalda Oliveira, Aleix Prat, Violeta Serra. Antitumor activity of patritumab deruxtecan (HER3-DXd), a HER3-directed antibody drug conjugate (ADC) across a diverse panel of breast cancer (BC) patient-derived xenografts (PDXs) [abstract]. In: Proceedings of the 2021 San Antonio Breast Cancer Symposium; 2021 Dec 7-10; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2022;82(4 Suppl):Abstract nr P5-13-14.
Cyclin-dependent kinases 4 and 6 inhibitors (CDK4/6i), combined with endocrine therapy (ET), have demonstrated higher antitumor activity than ET alone for the treatment of advanced estrogen receptor-positive (ER+) breast cancer (BC). Some ER+ BC are de novo resistant to CDK4/6i and others develop acquired resistance. Therapies for tumors after progression are needed. Here, we demonstrate that p16 overexpression is associated with reduced antitumor activity of CDK4/6i in patient-derived xenografts (PDX; n=37) and ER+ BC cell lines, and reduced response of early/advanced ER+HER2- BC patients (n=49) to CDK4/6i. We also identified heterozygous RB1 loss as biomarker of acquired resistance and poor clinical outcome in ER+, CDK4/6i-treated BC PDX and patients. Combination of CDK4/6i ribociclib with PI3K inhibitor (PI3Ki) alpelisib showed antitumor activity in ER+ non-basal-like BC PDX, independently of PIK3CA or RB1 mutation (n=25). Our results offer new insights into predicting primary and acquired resistance to CDK4/6i and post-progression therapeutic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.