Google Play Store is a popular distribution channel with millions of applications. WhatsApp is the most downloaded communication application on Play Store. A few months ago, WhatsApp changed its privacy policy, triggering a wave of user reviews outrage. Privacy is essential in the application; users are worried about their data security and privacy. A computational system must be required to analyze the user’s reviews for WhatsApp authority to make better policies. This study aims to develop a deep learning-based model for automatically assessing reviews that can be adapted for future data analysis. We proposed a deep learning methodology by using Aspect-based sentiment analysis (ABSA) utilizing the communication app reviews scraped from the Google play store using the Google Play scrapper application. This study uses the text mining technique for ABSA on the user’s reviews. For Topic extraction, we have used Latent Dirichlet Allocation (LDA) and the deep learning method Long Short-Term Memory (LSTM) for topic classification. The results show that our proposed model gives us a promising outcome with 90% accuracy by using the LSTM model. WhatsApp authority can use the results to optimize communication applications by adding more efficient features and updating them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.