Background. Post-cured composite resins exhibit improvements in physical and mechanical properties due to additional polymerization conversion. However, the post-curing techniques might influence the color stability of composite resin materials. Thus, this study evaluated the color stability of a nanofilled composite resin (Filtek Z350 XT - 3M ESPE) subjected to different post-curing techniques. Methods. Sixty samples (color A2) were randomly allocated to six experimental groups (n=10): G1: photoactivation (P) (control); G2: P + microwave oven with distilled water; G3: P + microwave oven without distilled water; G4: P + conventional oven; G5: P + dry-heat sterilizer; G6: P + steam autoclave. All the groups were stored in distilled water for 60 days and immersed daily in 5 mL of a coffee solution for 3 minutes. The color readings (CIEL*a*b* system) were performed at two different time intervals, initially and after 60 days, in a reflectance spectrophotometer (UV-2600; Shimadzu). The colorimetric readings were performed using the Color Analysis software (CIEL*a*b* system). Results. Group G6 exhibited significantly low values of total color change (ΔE=13.16). The control (ΔE=15.32) and G5 (ΔE=15.49) groups exhibited intermediate values, with no difference between them. In turn, the groups in which the resin was heated in a microwave (G2 ΔE=18.55 and G3 ΔE=19.45) exhibited the most significant color changes (one-way ANOVA and Tukey test, P≤0.05). Conclusion. Steam autoclave post-polymerization increased the color stability of the nanofilled resin subjected to artificial aging and coffee immersion.
Aim: This study evaluated the water sorption and solubility of a light-cured resin cement, under four thicknesses and four opacities of a lithium disilicate ceramic, also considering three light-emitting diode (LED) units. Methods: A total of 288 specimens of a resin cement (AllCem Veneer Trans – FGM) were prepared, 96 samples were light-cured by each of the three light curing units (Valo – Ultradent / Radii-Cal – SDI / Bluephase II – Ivoclar Vivadent), divided into 16 experimental conditions, according to the opacities of the ceramic: High Opacity (HO), Medium Opacity (MO), Low Translucency (LT), High Translucency (HT), and thicknesses (0.3, 0.8, 1.5, and 2.0 mm) (n = 6). The specimens were weighed at three different times: Mass M1 (after making the specimens), M2 (after 7 days of storage in water), and M3 (after dissection cycle), for calculating water sorption and solubility. Results: The higher thickness of the ceramic (2.0 mm) significantly increased the values of water sorption (44.0± 4.0) and solubility (7.8±0.6), compared to lower thicknesses. Also, the ceramic of higher opacity (HO) generated the highest values of sorption and solubility when compared to the other opacities, regardless of the thickness tested (ANOVA-3 factors / Tukey’s test, α = 0.05). There was no influence of light curing units. Conclusion: Higher thicknesses and opacities of the ceramic increased the water sorption and solubility of the tested light-cured resin cement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.