Objective. To probe into the effect of LncRNA TUG1 on the healing of closed tibial fracture in mice. Methods. The closed tibial fracture model of mice was established, selecting the mouse osteoblast line MC3T3-E1, with the cells separated into four groups. The expression levels of TUG1 and miR-221-3p were determined by RT-qPCR analysis, with the targeting relationship between TUG1 and miR-221-3p authenticated by dual luciferase reporter (DLR) assay, detection of cell migration (CM) ability based on Transwell cell migration (TCM) assay, and cell proliferation (CP) acquired by cell counting kit-8 (CCK-8). Results. Prediction results of the target gene by bioinformatics software showed that miR-221-3p had binding sites with the 3 ′ -UTR of TUG1, and DLR assay authenticated the targeting relationship between LncRNA TUG1 and miR-221-3p. Downregulation of TUG1 inhibited osteoblast CP and CM and promoted osteoblast cell apoptosis (CA). Cell cycle analysis indicated that miR-221-3p provoked cell cycle arrest in G1 stage of MC3T3-E1 cells. The siLncRNA-NC group had higher anticyclin D1 and D3 levels than the siLncRNA TUG1 group, with a lower CA rate in the former, implying that miR-221-3p overexpression inhibited osteoblast CP and CM and LncRNA TUG1 inhibited CA. Downregulation of miR-221-3p partly reversed the retardation out of downregulating TUG1 on osteoblast CP and CM. Bcl-2 level was higher in the LncRNA TUG1 group compared to the siLncRNA TUG1 and miR-221-3p overexpression groups, with remarkably lower SDF-1 level in the miR-221-3p overexpression group than those in the control, miRNA-NC, and LncRNA TUG1 groups. Conclusion. The downregulation of miR-221-3p by LncRNA TUG1 can promote the healing of closed tibial fractures in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.