The high fat diet alters intestinal microbiota due to increased intestinal permeability and susceptibility to microbial antigens leads to metabolic endotoxemia. But probiotic juices reported for various health benefits. In this background we hypothesized that pectinase treated probiotic banana juice has diverse effects on HFD induced obesity and non-alcoholic steatohepatitis. 20 weeks fed HFD successfully induced obesity and its associated complications in experimental rats. The supplementation of probiotic banana juice for 5 months at a dose of 5 mL/kg bw/day resulted significant decrease (p < 0.05) in body weight (380 ± 0.34), total fat (72 ± 0.8), fat percentage (17 ± 0.07) and fat free mass (165 ± 0.02). Reduction (p < 0.05) in insulin resistance (5.20 ± 0.03), lipid profile (TC 120 ± 0.05; TG 160 ± 0.24; HDL 38 ± 0.03), liver lipid peroxidation (0.7 ± 0.01), hepatic enzyme markers (AST 82 ± 0.06; ALT 78 ± 0.34; ALP 42 ± 0.22), and hepatic steatosis by increasing liver antioxidant potential (CAT 1.4 ± 0.30; GSH 1.04 ± 0.04; SOD 0.82 ± 0.22) with normal hepatic triglycerides (15 ± 0.02) and glycogen (0.022 ± 0.15) contents and also showed normal liver size, less accumulation of lipid droplets with only a few congestion. It is concluded that the increased intestinal S. cerevisiae yeast can switch anti-obesity, antidiabetic, antioxidative stress, antioxidant and anti-hepatosteatosis effect. This study results will have significant implications for treatment of NAFLD.
Concrete is a strong and fairly inexpensive building substance, but has several disadvantages like cracking that allows corrosion, thus reducing its lifespan. To mitigate these complications, long-lasting microbial self-healing cement is an alternative that is eco-friendly and also actively repairs cracks. The present paper describes the detailed experimental investigation on compressive strength of cement mortars, mixed with six alkaliphilic bacteria, isolated from subsurface mica mines of high alkalinity. The experiments showed that the addition of alkaliphilic isolates at different cell concentrations (104 and 106 cells/ml) enhanced the compressive strength of cement mortar, because the rapid growth of bacteria at high alkalinity precipitates calcite crystals that lead to filling of pores and densifying the concrete mix. Thus, Bacillus subtilis (SVUNM4) showed the highest compressive strength (28.61%) of cement mortar at 104 cells/ml compared to those of other five alkaliphilic isolates (Brevibacillus sp., SVUNM15-22.1%; P. dendritiformis, SVUNM11-19.9%; B. methylotrophicus, SVUNM9-16%; B. licheniformis, SVUNM14-12.7% and S. maltophilia, SVUNM13-9.6%) and controlled cement mortar as well. This method resulted in the filling of cracks in concrete with calcite (CaCO3), which was observed by scanning electron microscopy (SEM). Our results showed that the alkaliphilic bacterial isolates used in the study are effective in self-healing and repair of concrete cracks.
Selenium deficiency is one of the most prevalent micronutrient deficiencies in the global health issues. Hence, in this investigation, we aimed to explore the key genes and biological pathways associated with selenium deficiency linked with selenium status. Chickens were fed a basal diet, a selenium-deficient diet for 10 weeks. The integrated analysis discovered differential expressed genes between the selenium-deficient and normal samples. Multiple approaches, includes GO analysis (g: Profilers database) and pathway analysis (KEGGs), were employed to functionally annotate the DEGs through R program. The protein-protein interactions (PPI) network, and their visualization, gene cluster, hub genes were identified through the STRING, Cytoscape plugin MCODE, CytoHubba, and CancerGeneNet tool. Our results revealed that administration of selenium-deficient diet markedly reduced plasma selenium concentration. Next, a total of 10,266 DEGs (213 upregulated and 237 downregulated) were identified. GO and KEGGs pathway showed that regulation of cell functions, and cancer pathways. Cytoscape demonstrated that eight modules, ten significant hub genes and CancerGeneNet tool revealed that all hub genes were involved in tumorigenesis pathways. Overall, our investigation offered ten hub genes that could be used as precise diagnostic and prognostic candidate biomarkers of selenium-deficiency might be used as treatment strategy in animal and humans.
Selenium deficiency is a prevalent micronutrient deficiency that poses a major health concern worldwide. This study aimed to shed light on the molecular mechanisms underlying selenium deficiency using a chick model. Chickens were divided into control and selenium deficient groups. Plasma samples were collected to measure selenium concentration and transcriptome analyse were performed on oviduct samples. The results showed that selenium deficiency led to a significant reduction in plasma selenium levels and altered the expression of 10,266 differentially expressed genes (DEGs). These DEGs primarily regulated signal transduction and cell motility. The molecular function includes GTPase regulatory activity, and KEGG pathway analysis showed that they were mainly involved in the signal transduction. By using Cytoscape and CancerGeneNet tool, we identified 8 modules and 10 hub genes (FRK, JUN, PTPRC, ACTA2, MST1R, SDC4, SDC1, CXCL12, MX1 and EZR) associated with receptor tyrosine kinase pathway, Wnt and mTOR signaling pathways that may be closely related to cancer. These hub genes could be served as precise diagnostic and prognostic candidate biomarkers of selenium deficiency and potential targets for treatment strategies in both animals and humans. This study sheds light on the molecular basis of selenium deficiency and its potential impact on public health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.