Purpose-To prospectively demonstrate the feasibility of using indocyanine green, a nearinfrared (NIR) fluorophore at the minimum dose needed for noninvasive optical imaging of lymph nodes (LNs) in breast cancer patients undergoing sentinel lymph node mapping (SLNM).Materials and Methods-Informed consent was obtained from 24 women (age range, 30-85 years) who received intradermal subcutaneous injections of 0.31-100 μg indocyanine green in the breast in this IRB-approved, HIPAA-compliant, dose escalation study to find the minimum microdose for imaging. The breast, axilla, and sternum were illuminated with NIR light and the fluorescence generated in the tissue was collected with an NIR-sensitive intensified chargedcoupled device. Lymphoscintigraphy was also performed. Resected LNs were evaluated for the presence of radioactivity, blue dye accumulation, and fluorescence. The associations between the resected LNs that were fluorescent and (a) the time elapsed between NIR fluorophore administration and resection and (b) the dosage of NIR fluorophores were tested with the Spearman rank and Pearson product moment correlation tests, respectively.Results-Lymph imaging consistently failed with indocyanine green microdosages between 0.31 and 0.77 μg. When indocyanine green dosages were 10 μg or higher, lymph drainage pathways from the injection site to LNs were imaged in eight of nine women; lymph propulsion was observed in seven of those eight. When propulsion in the breast and axilla regions was present, the mean apparent velocities ranged from 0.08 to 0.32 cm/sec, the time elapsed between "packets" of propelled fluid varied from 14 to 92 seconds. In patients who received 10 μg of indocyanine green or more, a weak negative correlation between the fluorescence status of resected LNs and the time © RSNA, 2008 Address correspondence to E.M.S. (evas@bcm.tmc.edu). Supplemental material: http://radiology.rsnajnls.org/cgi/content/full/2463070962/DC1 Author contributions:Guarantor of integrity of entire study, E.M.S.; study concepts/study design or data acquisition or data analysis/interpretation, all authors; manuscript drafting or manuscript revision for important intellectual content, all authors; manuscript final version approval, all authors; literature research, all authors; clinical studies, all authors; statistical analysis, all authors; and manuscript editing, all authors See Materials and Methods for pertinent disclosures. NIH Public Access Author ManuscriptRadiology. Author manuscript; available in PMC 2011 September 3. Conclusion-NIR fluorescence imaging of lymph function and LNs is feasible in humans at microdoses that would be needed for future molecular imaging of cancer-positive LNs.Currently, standard-of-care staging of breast cancer requires surgical resection of the first tumor-draining, or sentinel, lymph node (SLN) for subsequent pathologic examination (1). If the SLN is cancerous, then additional lymph nodes (LNs) in the axillary basin are subsequently removed for accurate staging. Recently, the a...
((64)Cu-DOTA)(n)-trastuzumab-(IRDye800)(m) may be an effective diagnostic imaging agent for staging HER-2-positive breast cancer patients and intraoperative resection.
Current techniques to assess lymph node metastases in cancer patients include lymphoscintigraphy after administration of a nonspecific radiocolloid in order to locate and resect lymph nodes for pathological examination of harbored cancer cells. Clinical trials involving intradermal or subcutaneous injection of antibody-based nuclear imaging agents have demonstrated the feasibility for target-specific, molecular imaging of cancer-positive lymph nodes. The basis for employing near-infrared (NIR) optical imaging for assessing disease is evidenced by recent work showing functional lymph imaging in mice, swine, and humans. We review antibody-based immunolymphoscintigraphy with an emphasis on the use of trastuzumab (or Herceptin) to target human epidermal growth factor receptor-2 (HER2) overexpressed in some breast cancers. Specifically, we review in vitro and preclinical imaging data from our laboratory that show how the dual-labeled agent ( 111 In-DTPA) n -trastuzumab-(IRDye800) m utilizes the high photon count provided by an NIR fluorescent dye, IRDye 800CW, and the radioactive signal from a gamma emitter, Indium-111, for possible detection of HER2 metastasis in lymph nodes. We show that the accumulation and clearance of ( 111 In-DTPA) n -trastuzumab-(IRDye800) m from the axillary nodes of mice occurs 48 h after intradermal injection into the dorsal aspect of the foot. The requirement for long clearance times from normal, cancer-negative nodes presents challenges for nuclear imaging agents with limited half-lives but does not hamper NIR optical imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.