Effects of changes in hydrophobicity of polymeric support on structure and activity of alpha-chymotrypsin (E.C. 3.4.21.1) have been studied with copolymers of allyl glycidyl ether (AGE) and ethylene glycol dimethacrylate (EGDM) with increasing molar ratio of EGDM to AGE (cross-link density 0.05 to 1.5). The enzyme is readily adsorbed from aqueous buffer at room temperature following Langmuir adsorption isotherms in unexpectedly large amounts (25% w/w). Relative hydrophobicity of the copolymers has been assessed by studying adsorption of naphthalene and Fmoc-methionine by the series of copolymers from aqueous solutions. Polymer hydrophobicity appears to increase linearly on increasing cross-link density from 0.05 to 0.25. Further increase in cross-link density causes a decrease in naphthalene binding but has little effect on binding of Fmoc-Met. Binding of alpha-chymotrypsin to these copolymers follow the trend for Fmoc-methionine binding, rather than naphthalene binding, indicating involvement of polar interactions along with hydrophobic interactions during binding of protein to the polymer. The adsorbed enzyme undergoes extensive denaturation (ca. 80%) with loss of both tertiary and secondary structure on contact with the copolymers as revealed by fluorescence, CD and Raman spectra of the adsorbed protein. Comparison of enzyme adsorption behavior with Eupergit C, macroporous Amberlite XAD-2, and XAD-7 suggests that polar interactions of the EGDM ester functional groups with the protein play a significant role in enzyme denaturation.
Allyl glycidyl ether (AGE)-ethylene glycol dimethacrylate (EGDM) copolymer with 25% crosslink density (AGE-25) shows excellent bovine serum albumin (BSA) adsorption (up to 16% (w/w)) at pH 8.0 and the adsorbed BSA is strongly bound. This protein-coated polymer provides a novel matrix with naturally existing functional groups such as thiol, amino, and carboxylic acid that are available for covalent immobilization of functional enzymes. Employing appropriate strategies, trypsin as a model protein was covalently bound to BSA-coated matrix both independently, and in a stepwise manner on the same matrix, with less than 5% loss of enzyme activity during immobilization. Glutaraldehyde crosslinking after immobilization provide stable enzyme preparation with activity of 510 units/g recycled up to six times without loss of enzyme activity. AFM studies reveal that the polymer surface has protein peaks and valleys rather than a uniform monolayer distribution of the protein and the immobilized enzyme preparation can best be described as polymer supported cross-linked enzyme aggregates (CLEAs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.