Background Timely and accurate identification of uropathogens and determination of their antimicrobial susceptibility is paramount to the management of urinary tract infections (UTIs). The main objective of this study was to develop an assay using LAMP (Loop mediated isothermal amplification) technology for simple, rapid and sensitive detection of the most common bacteria responsible for UTIs, as well as for the detection of the most prevalent genes (encoding cefotaximases from CTX-M group 1) responsible for resistance to 3rd generation of cephalosporins. Method We designed primers targeting Proteus mirabilis, while those targeting Escherichia coli, Klebsiella pneumoniae and Enterococcus faecalis and the CTX-M group 1 resistance gene were benchmarked from previous studies. The amplification reaction was carried out in a warm water bath for 60 min at 63 ± 0.5 °C. The amplicons were revealed by staining with Sybr Green I. Specificity and sensitivity were determined using reference DNA extracts spiked in sterile urine samples. The analytical performance of the assays was evaluated directly on pellets of urine samples from patients suspected of UTI and compared with culture. Results We found a high specificity (100%) for LAMP assays targeting the selected bacteria (P. mirabilis, E. coli, K. pneumoniae, E. faecalis) and the CTX-M group 1 when using DNA extracts spiked in urine samples. The sensitivities of the assays were around 1.5 103 Colony Forming Units (CFU) /mL corresponding to the cut-off value used to define bacteriuria or UTIs in patients with symptoms. Out of 161 urine samples tested, using culture as gold standard, we found a sensitivity of the LAMP techniques ranging from 96 to 100% and specificity from 95 to 100%. Conclusion We showed that the LAMP assays were simple and fast. The tests showed high sensitivity and specificity using a simple procedure for DNA extraction. In addition, the assays could be performed without the need of an expensive device such as a thermal cycler. These LAMP assays could be useful as an alternative or a complementary tool to culture reducing the time to diagnosis and guiding for more effective treatment of UTIs but also as a powerful diagnostic tool in resource-limited countries where culture is not available in primary health care structures.
IntroductionData regarding the acquisition of extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-PE) in neonates at the community level are scarce in low-income and middle-income countries (LMICs), where the burden of neonatal sepsis is high.Our study aims at identifying and quantifying the role of the different routes of ESBL-PE transmission for neonates, which are still undefined in the community in LMICs.Methods and analysisIn a semirural community in Madagascar, 60 mothers and their neonates will be recruited at delivery, during which a maternal stool sample and meconium of the newborn will be collected. Home visits will be planned the day of the delivery and next at days 3, 7, 14, 21 and 28. Stool samples from the newborn, the mother and every other household member will be collected at each visit, as well as samples from the environment in contact with the newborn (food, surfaces and objects). Sociodemographic data and factors which might drive ESBL-PE acquisition will also be collected.We will analyse the isolated ESBL-PE using DNA sequencing methods to characterise clones, resistance genes and plasmids of ESBL-PE. To analyse these data globally, we will develop novel analytical approaches combining mathematical modelling and statistics. Finally, mathematical simulations will be performed to test different strategies of control of ESBL-PE transmission to neonates.In complement, we will conduct an anthropological investigation to understand local environments and practices that would contribute to neonatal ESBL-PE acquisition. In-depth interviews with members of 16 households will be conducted and 4 mother–newborn pairs will be followed by a participants’ observations methodology.Ethics and disseminationThe study was approved by the ethical committee in Madagascar and by the institutional review board of Institut Pasteur, Paris, France.Findings will be reported to participating families, collaborators and local government; presented at national and international conferences and disseminated by peer-review publications.
Background: Timely and accurate identification of uropathogens and determination of their antimicrobial susceptibility is paramount to the management of urinary tract infections (UTIs). The main objective of this study was to develop an assay using LAMP (Loop mediated isothermal amplification) technology for simple, rapid and sensitive detection of the most common bacteria responsible for UTIs, as well as for the detection of the most prevalent genes (encoding cefotaximases from CTX-M group 1) responsible for resistance to 3rd generation of cephalosporins. Method: We designed primers targeting Proteus mirabilis, while those targeting Escherichia coli, Klebsiella pneumoniae and Enterococcus faecalis and the CTX-M group 1 resistance gene were benchmarked from previous studies. The amplification reaction was carried out in a warm water bath for 60 min at 63±0.5 °C. The amplicons were revealed by staining with Sybr Green I. Specificity and sensitivity were determined using reference DNA extracts spiked in sterile urine samples. The analytical performance of the assays was evaluated directly on pellets of urine samples from patients suspected of UTI and compared with culture.Results: We found a high specificity (100%) for LAMP assays targeting the selected bacteria (P. mirabilis, E. coli, K. pneumoniae, E. faecalis) and the CTX-M group 1 when using DNA extracts spiked in urine samples. The sensitivities of the assays were around 1.5 103 Colony Forming Units (CFU) /mL corresponding to the cut-off value used to define bacteriuria or UTIs in patients with symptoms. Out of 161 urine samples tested, using culture as gold standard, we found a sensitivity of the LAMP techniques ranging from 96 to 100 % and specificity from 95 to 100 %.Conclusion: We showed that the LAMP assays were simple and fast. The tests showed high sensitivity and specificity using a simple procedure for DNA extraction. In addition, the assays could be performed without the need of an expensive device such as a thermal cycler. These LAMP assays could be useful as an alternative or a complementary tool to culture reducing the time to diagnosis and guiding for more effective treatment of UTIs but also as a powerful diagnostic tool in resource-limited countries where culture is not available in primary health care structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.