Summary The entorhinal cortex (EC) is regarded as the gateway to the hippocampus and thus is essential for learning and memory. Whereas the EC expresses a high density of GABAB receptors, the functions of these receptors in this region remain unexplored. Here we examined the effects of GABAB receptor activation on neuronal excitability in the EC and spatial learning. Application of baclofen, a specific GABAB receptor agonist, inhibited significantly neuronal excitability in the EC. GABAB receptor-mediated inhibition in the EC was mediated via activating TREK-2, a type of two-pore domain K+ channels and required the functions of inhibitory G proteins and protein kinase A pathway. Depression of neuronal excitability in the EC underlies GABAB receptor-mediated inhibition of spatial learning as assessed by Morris water maze. Our study indicates that GABAB receptors exert a tight control over spatial learning by modulating neuronal excitability in the EC.
Alzheimer disease (AD) brain is characterized by extracellular plaques of amyloid β (Aβ) peptide with reactive microglia. This study aimed to determine whether a dietary intervention could attenuate microgliosis. Memory was assessed in 12-mo-old male amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice via Barnes maze testing followed by division into either a control-fed group provided free access to normal chow and water or a treatment group provided free access to normal chow and drinking water supplemented with pomegranate extract (6.25 mL/L) for 3 mo followed by repeat Barnes maze testing for both groups. Three months of pomegranate feeding decreased the path length to escape of mice compared with their initial 12-mo values (P < 0.05) and their control-fed counterparts (P < 0.05). Brains of the 3-mo study pomegranate-fed mice had lower tumor necrosis factor α (TNF-α) concentrations (P < 0.05) and lower nuclear factor of activated T-cell (NFAT) transcriptional activity (P < 0.05) compared with controls. Brains of the 3-mo pomegranate or control mice were also compared with an additional control group of 12-mo-old mice for histologic analysis. Immunocytochemistry showed that pomegranate- but not control-fed mice had attenuated microgliosis (P < 0.05) and Aβ plaque deposition (P < 0.05) compared with 12-mo-old mice. An additional behavioral study again used 12-mo-old male APP/PS1 mice tested by T-maze followed by division into a control group provided with free access to normal chow and sugar supplemented drinking water or a treatment group provided with normal chow and pomegranate extract-supplemented drinking water (6.25 mL/L) for 1 mo followed by repeat T-maze testing in both groups. One month of pomegranate feeding increased spontaneous alternations versus control-fed mice (P < 0.05). Cell culture experiments verified that 2 polyphenol components of pomegranate extract, punicalagin and ellagic acid, attenuated NFAT activity in a reporter cell line (P < 0.05) and decreased Aβ-stimulated TNF-α secretion by murine microglia (P < 0.05). These data indicate that dietary pomegranate produces brain antiinflammatory effects that may attenuate AD progression.
Summary Growth hormone significantly impacts lifespan in mammals. Mouse longevity is extended when growth hormone (GH) signaling is interrupted but markedly shortened with high plasma hormone levels. Methionine metabolism is enhanced in growth hormone deficiency, e.g. Ames dwarf, but suppressed in GH transgenic mice. Methionine intake affects also lifespan, thus, GH mutant mice and respective wild type littermates were fed 0.16%, 0.43% or 1.3% methionine to evaluate the interaction between hormone status and methionine. All wild type and GH transgenic mice lived longer when fed 0.16% methionine but not when fed higher levels. In contrast, animals without growth hormone signaling due to hormone deficiency or resistance, did not respond to altered levels of methionine in terms of lifespan, body weight or food consumption. Taken together, our results suggest that the presence of growth hormone is necessary to sense dietary methionine changes thus, strongly linking growth and lifespan to amino acid availability.
BackgroundIncreased reactive microglia are a histological characteristic of Parkinson's disease (PD) brains, positively correlating with levels of deposited α-synuclein protein. This suggests that microglial-mediated inflammatory events may contribute to disease pathophysiology. Mutations in the gene coding for α-synuclein lead to a familial form of PD. Based upon our prior findings that α-synuclein expression regulates microglial phenotype we hypothesized that expression of mutant forms of the protein may contribute to the reactive microgliosis characteristic of PD brains.MethodsTo quantify the effects of wild type and mutant α-synuclein over-expression on microglial phenotype a murine microglial cell line, BV2, was transiently transfected to express human wild type (WT), and mutant α-synuclein (A30P and A53T) proteins. Transfected cells were used to assess changes in microglia phenotype via Western blot analysis, ELISA, phagocytosis, and neurotoxicity assays.ResultsAs expected, over-expression of α-synuclein induced a reactive phenotype in the transfected cells. Expression of α-synuclein increased protein levels of cycloxygenase-2 (Cox-2). Transfected cells demonstrated increased secretion of the proinflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), as well as increased nitric oxide production. Transfected cells also had impaired phagocytic ability correlating with decreased protein levels of lysosomal-associated membrane protein 1 (LAMP-1). In spite of the increased cytokine secretion profile, the transfected cells did not exhibit increased neurotoxic ability above control non-transfected BV2 cells in neuron-microglia co-cultures.ConclusionsThese data demonstrated that over-expression of α-synuclein drives microglial cells into a form of reactive phenotype characterized by elevated levels of arachidonic acid metabolizing enzymes, cytokine secretion, and reactive nitrogen species secretion all superimposed upon impaired phagocytic potential.
BackgroundAmyloid β (Aβ) peptide is hypothesized to stimulate microglia to acquire their characteristic proinflammatory phenotype in Alzheimer’s disease (AD) brains. The specific mechanisms by which Aβ leads to microglial activation remain an area of interest for identifying attractive molecular targets for intervention. Based upon the fact that microglia express the proinflammatory transcription factor, nuclear factor of activated T cells (NFAT), we hypothesized that NFAT activity is required for the Aβ-stimulated microgliosis that occurs during disease.MethodsPrimary murine microglia cultures were stimulated with Aβ in the absence or presence of NFAT inhibitors, FK506 and tat-VIVIT peptide, to quantify secretion of cytokines, neurotoxins, or Aβ phagocytosis. A transgenic mouse model of AD, APP/PS1, was treated subcutaneously via mini-osmotic pumps with FK506 or tat-VIVIT to quantify effects on cytokines, microgliosis, plaque load, and memory.ResultsExpression of various NFAT isoforms was verified in primary murine microglia through Western blot analysis. Microglial cultures were stimulated with Aβ fibrils in the absence or presence of the NFAT inhibitors, FK506 and tat-VIVIT, to demonstrate that NFAT activity regulated Aβ phagocytosis, neurotoxin secretion, and cytokine secretion. Delivery of FK506 and tat-VIVIT to transgenic APP/PS1 mice attenuated spleen but not brain cytokine levels. However, FK506 and tat-VIVIT significantly attenuated both microgliosis and Aβ plaque load in treated mice compared to controls. Surprisingly, this did not correlate with changes in memory performance via T-maze testing.ConclusionsOur findings suggest that development of specific NFAT inhibitors may offer promise as an effective strategy for attenuating the microgliosis and Aβ plaque deposition that occur in AD.Electronic supplementary materialThe online version of this article (doi:10.1186/s12974-015-0255-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.