Field experiments were conducted to identify the impact of post-anthesis rainfall on the concentration of deoxynivalenol (DON) and zearalenone (ZON) in harvested wheat grain. Winter wheat plots were inoculated with Fusarium graminearum at stem extension (GS31) and prothioconazole was applied at mid-anthesis (GS65) to split plots and plots were subsequently mist irrigated for 5 days. Plots were either covered by polytunnels, irrigated by sprinklers or left as non-irrigated uncovered control plots after medium-milk (GS75). Plots were harvested either when ripe (GS92; early harvest) or three weeks later (late harvest). Fusarium head blight (FHB) was assessed each week from inoculation. At harvest, yield and grain quality was measured and grains were analysed for DON and ZON. Differences in rainfall resulted in contrasting disease pressure in the two experiments, with low FHB in the first experiment and high FHB in the second. Difference in FHB resulted in large differences in grain yield, quality and mycotoxin content. DON concentration was significantly (P < 0.05) higher in irrigated compared to covered and control plots in the first experiment, whereas in the second experiment, DON was significantly (P < 0.05) higher in the covered plots compared to the control and irrigated plots. ZON concentration was significantly (P < 0.05) higher in irrigated plots in both experiments. Later harvesting resulted in an approximate fivefold increase in ZON in the first experiment, but was not significantly different in the second experiment. Prothioconazole significantly (P < 0.05) reduced DON in both experiments, but gave inconsistent reductions to ZON. This is the first report to show that the post-anthesis rainfall can significantly increase ZON in wheat, which can increase further with a delayed harvest but may be significantly reduced with the application of prothioconazole. Importantly, in the absence of moisture late season, ZON remains at very low concentrations even when wheat is severely affected by FHB.
Legislative limits for Fusarium mycotoxins decrease from unprocessed wheat to processed products. A previous observational study identified a seasonal difference in the distribution of DON but not ZON within mill fractions. Rainfall is known to influence the production of these mycotoxins in wheat, but the effects of rainfall on their distribution within mill fractions is not known. Laboratory and field experiments were conducted to determine the impact of different watering regimes on the distribution of DON and ZON in wheat mill fractions. Results indicated that repeated wetting and drying could cause movement of DON towards equilibrium across the mill fractions. Whereas, high levels of rainfall could cause a large reduction of DON in the grain, predominantly from the bran fraction, resulting in a proportional increase within white flour. ZON was detectable in fewer samples but results indicated it is less mobile within the grain. It is important for processors to be aware of the variation of mycotoxin distribution within mill fractions and the drivers of this variation to ensure limits set for grain intake result in mill products within mycotoxin legislative limits.
Chaetomium spp. are common colonizers of soil and cellulose-containing substrates. Seventeen isolates of Chaetomium spp., which included 15 isolates of C. globosum and one each of C. reflexum and C. perlucidum, were genetically characterized with universal rice primers (URP -primers derived from DNA repeat sequences in the rice genome) using polymerase chain reaction (URP-PCR). Out of the 12 URP's used in the study, nine primers were effective in producing polymorphic fingerprint patterns from DNA of Chaetomium spp. Analysis of the entire fingerprint profile using the unweighted pair-group method with arithmetic averages (UPGMA) clearly differentiated C. globosum isolates from C. perlucidum and C. reflexum. One of the primers, URP-2R, produced a uniform DNA band of 1.9 kb in all the isolates of C. globosum but not in C. perlucidum and C. reflexum, which can be used as molecular marker to differentiate C. globosum from other species. Our results indicate that URP's are sensitive and give reproducible results for assaying the genetic variability in Chaetomium spp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.