Herein, we systematically studied the electronic, optical, and mechanical properties of a hydrogenated (6,0) single-walled carbon nanotube [(6,0) h-SWCNT] under applied uniaxial stress from first-principles density functional theory (DFT) and molecular dynamics (MD) simulation. We have applied the uniaxial stress range from −18 to 22 GPa on the (6,0) h-SWCNT (− sign indicates compressive and + indicates tensile stress) along the tube axes. Our system was found to be an indirect semiconductor (Γ−Δ), with a band gap value of ∼0.77 eV within the linear combination of atomic orbitals (LCAO) method using a GGA-1/2 exchangecorrelation approximation. The band gap for (6,0) h-SWCNT significantly varies with the application of stress. The indirect to direct band gap transition was observed under compressive stress (−14 GPa). The strained (6,0) h-SWCNT showed a strong optical absorption in the infrared region. Application of external stress enhanced the optically active region from infrared to Vis with maximum intensity within the Vis-IR region, making it a promising candidate for optoelectronic devices. Ab initio molecular dynamics (AIMD) simulation has been used to study the elastic properties of the (6,0) h-SWCNT which has a strong influence under applied stress.
Using Density Functional Theory (DFT), 2D hexagonal silicene-ZnS-silicene trilayer heterostructure was studied with van der Waals correction as implemented in Grimme’s method. Small lattice mismatch of about 0.77% only between silicene and ZnS monolayer suggest ease in formation of sandwiched heterostructure. The negative value of total energy at 298 K from MD simulation confirms its ground state stability. Unlike monolayer silicene, our trilayer heterostructure exhibits a direct band gap of 0.63 eV in its equilibrium state. Calculated elastic moduli predict that Si-ZnS-Si has an enhanced ability to resist tensile and shear deformation than the pristine silicene and ZnS monolayer. Due to strong van der Waal’s interaction between the layers, Si-ZnS-Si has much lower thermal coefficient of linear expansion and therefore is more stable against any thermally induced deformation. When a transverse external electric field is applied, we observe direct-to-indirect band gap transition. On increasing the electric field further, the heterostructure remains indirect band gap semiconductor until it abruptly transforms to metallic nature at 1.0 V/Å. Theoretical prediction of heterostructure property presented in this work may provide valuable data for developing future nanoelectronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.