This paper presents a numerical simulation of an aircraft tire in contact with a rough surface using a variable friction coefficient dependent on temperature and contact pressure. A sliding facility was used in order to evaluate this dependence of the friction coefficient. The temperature diffusion throughout the tire cross-section was measured by means of thermocouples. Both frictional heating and temperature diffusion were compared to numerical two-and three-dimensional simulations. An adequate temperature prediction could be obtained. In future simulations, wear should be taken into account in order to have a more accurate simulation especially in the case of high pressures and slipping velocities. A 3D finite element model for a rolling tire at a velocity of 37.79 knots (19.44 m/s) and in a cornering phase was investigated using a variable friction coefficient dependent on temperature and pressure. The numerical simulation tended to predict the temperature of the tire tread after a few seconds of rolling in skidding position, the temperature of the contact zone increases to 140 • C. Further investigations must be carried out in order to obtain the evolution of the temperature observed experimentally. The authors would like to point out that for confidentiality reasons, certain numerical data could not be revealed.
The aim of this study is to investigate the thermal evolution of an aircraft tire rolling at high velocities up to take off values. As this kind of experiment is difficult to realize on a real runway, experimental tests were realized on aircraft tires rolling on a steel drum. The rotating drum facility allows to apply variable velocities beyond the take off limits, at fixed skidding angles and loadings. The rolling conditions, vertical loading, velocity and cornering conditions were adopted to correspond to the real conditions of an aircraft tire running or skidding on a flat runway. In the experimental part, the influence of skidding angle, velocity and loading on the thermal evolution of the tire tread were investigated. The thermo-mechanical finite element analysis of a pneumatic radial tire structure was performed taking into account the hyper-viscoelastic rubber behavior, with heating mechanisms developed by the inelastic deformation and by friction. Three-dimensional finite element simulations of an aircraft tire rolling on a steel drum were carried out using Abaqus/Standard finite element solver. The comparison of the temperature distribution on the tire tread between numerical results and the experimental data shows the same overall tendencies. The good correlation between numerical and experimental data shows that numerical simulation could predict the thermal evolution of the tire in critical situations. The authors would like to mention that for confidentiality reason, certain numerical data could not be revealed.
This paper deals with a Bush plane tire rolling in critical and extreme conditions as shocks and rebounds. The approach adopted is based on previous works on the modelling of Jumbo-Jet tires. A numerical finite element model is used in the simulation of the tire. Firstly, an experimental part is dedicated to study the inner features of the tire. The tire geometry and the materials within it are described. Secondly, a 2D embedded mesh model is developed based on the tire cross-section. Then a 3D model is generated and a runway with rocks and ramps is modelled. The tire behavior while rolling over obstacles is investigated. The simulation results, such as tire deformation, are analyzed. The results show significant deformation of the tire while rolling over ramps and a low lateral stiffness, giving it a significant capacity to absorb shocks. The numerical simulation was developed in order to predict the tire behavior during landing, especially in critical and extreme conditions. Cornering simulations were realized to evaluate the self-aligning moment. The numerical simulation is an efficient tool to estimate the forces transferred to the rim axis in critical and extreme conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.