Emilia sonchifolia (L.) DC is a plant used in traditional medicine to treat several viral and bacterial diseases. The antiviral activities of selected Sephadex LH-20 column fractions and HPLC subfractions of an acetone extract of E. sonchifolia leaves were determined in shrimp Penaeus merguiensis primary lymphoid cells infected with either white spot syndrome virus (WSSV) or yellow head virus (YHV). WSSV and YHV replication was quantified using quantitative real-time PCR tests targeted to the VP19 and ORF1b gene transcripts, respectively. In lymphoid organ cells exposed to 100 µg ml −1 of either the Sephadex fraction F14 or the HPLC F14 subfraction SF4, both fractions caused reduced replication, but YHV replication was reduced only by SF4. In the asthiazolyl blue mitochondrial enzyme activity assays to assess extract cytotoxicity, > 60% of primary lymphoid organ cells remained viable following exposure to 100 µg ml −1 of either F14 or SF4. GC-MS analysis of the HPLC F14 subfraction SF4 showed that it contained 2, 4-di-tert-butylphenol. This study is the first to show that E. sonchifolia leaf extracts might be useful as bioactive agents to protect shrimp against viruses such as WSSV and YHV.KEY WORDS: Antiviral activity · Emilia sonchifolia · Lymphoid organ cell culture · WSSV · YHV ·
Penaeus merguiensisResale or republication not permitted without written consent of the publisher
A shear‐thinning and self‐healing hydrogel based on a gelatin biopolymer was synthesized using vanillin and Fe3+ as dual crosslinking agents. Rheological studies indicate the formation of a strong gel found to be injectable and exhibit rapid self‐healing (within 10 minutes). The hydrogels also exhibited a high degree of swelling, suggesting potential as wound dressings since the absorption of large amounts of wound exudate, and optimum moisture levels, lead to accelerated wound healing. Andrographolide, an anti‐inflammatory natural product was used to fabricate silver nanoparticles, which were characterized, and composited with the fabricated hydrogels to imbue them with anti‐microbial activity. The nanoparticle/hydrogel composites exhibit activity against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Burkholderia pseudomallei (B. pseudomallei), the pathogen that causes melioidosis, a serious but neglected disease affecting southeast Asia and northern Australia. Finally, the nanoparticle/hydrogel composites are shown to enhance wound closure in animal models compared to the hydrogel alone, confirming that these hydrogel composites hold great potential in the biomedical field.This article is protected by copyright. All rights reserved
Mutation is an underlying cause of evolution as a mutant, either natural or artificial, with a novel trait may be preferentially selected for nature because of its superior survival adaptive features. Because of the desirability of the novelty, mutation is the heritable change to an individual’s genetic makeup, which is passed on from parent to offspring and thereby, drives evolution. In nature, mutations are spontaneously caused by errors in the DNA replication. Gamma radiation induced mutation in plant breeding is the one effective method that can cause DNA changes via direct and indirect actions. Many crop varieties have been created using gamma irradiation mutagenesis technology for trait improvement that enhance the characteristic or increase the abiotic and biotic stress tolerance. Plant breeding and genetics procedure usually start from mutation induction by gamma irradiation and work with the other modern enabling technologies, such as tissue culture or molecular genetics. Tissue culture and bioreactor techniques are used for synthesizing new plant varieties, while the molecular genetic technique is used for genetic analysis of the new varieties. The irradiation coupled with new modern tissue culture and molecular genetic technology is widely used to induce plant mutation breeding for creating new commercial plant varieties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.