In this study, we propose a novel approach to investigate changes in the visible tumour and surrounding tissues with the aim of identifying patterns of tumour change during radiotherapy (RT) without segmentation on the follow-up images. On-treatment cone-beam computed tomography (CBCT) images of 240 non-small cell lung cancer (NSCLC) patients who received 55 Gy of RT were included. CBCTs were automatically aligned onto planning computed tomography (planning CT) scan using a two-step rigid registration process. To explore density changes across the lung-tumour boundary, eight shells confined to the shape of the gross tumour volume (GTV) were created. The shells extended 6 mm inside and outside of the GTV border, and each shell is 1.5 mm thick. After applying intensity correction on CBCTs, the mean intensity was extracted from each shell across all CBCTs. Thereafter, linear fits were created, indicating density change over time in each shell during treatment. The slopes of all eight shells were clustered to explore patterns in the slopes that show how tumours change. Seven clusters were obtained, 97% of the patients were clustered into three groups. After visual inspection, we found that these clusters represented patients with little or no density change, progression and regression. For the three groups, the survival curves were not significantly different between the groups, p-value = 0.51. However, the results show that definite patterns of tumour change exist, suggesting that it may be possible to identify patterns of tumour changes from on-treatment CBCT images.
The growing awareness of the influence of “what we eat” on lifestyle and health has led to an increase in the use of embedded food analysis and recognition systems. These solutions aim to effectively monitor daily food consumption, and therefore provide dietary recommendations to enable and support lifestyle changes. Mobile applications, due to their high accessibility, are ideal for real-life food recognition, volume estimation and calorific estimation. In this study, we conducted a systematic review based on articles that proposed mobile computer vision-based solutions for food recognition, volume estimation and calorific estimation. In addition, we assessed the extent to which these applications provide explanations to aid the users to understand the related classification and/or predictions. Our results show that 90.9% of applications do not distinguish between food and non-food. Similarly, only one study that proposed a mobile computer vision-based application for dietary intake attempted to provide explanations of features that contribute towards classification. Mobile computer vision-based applications are attracting a lot of interest in healthcare. They have the potential to assist in the management of chronic illnesses such as diabetes, ensuring that patients eat healthily and reducing complications associated with unhealthy food. However, to improve trust, mobile computer vision-based applications in healthcare should provide explanations of how they derive their classifications or volume and calorific estimations.
Observed gross tumor volume (GTV) shrinkage during radiotherapy (RT) raises the question of whether to adapt treatment to changes observed on the acquired images. In the literature, two modes of tumor regression have been described: elastic and non-elastic. These modes of tumor regression will affect the safety of treatment adaptation. This study applies a novel approach, using routine cone-beam computed tomography (CBCT) and deformable image registration to automatically distinguish between elastic and non-elastic tumor regression. Methods: In this retrospective study, 150 locally advanced non-small cell lung cancer patients treated with 55 Gray of radiotherapy were included.First,the two modes of tumor regression were simulated. For each mode of tumor regression, one timepoint was simulated. Based on the results of simulated data, the approach used for analysis in real patients was developed. CBCTs were non-rigidly registered to the baseline CBCT using a cubic B-spline algorithm, NiftyReg. Next, the Jacobian determinants were computed from the deformation vector fields. To capture local volume changes, 10 Jacobian values were sampled perpendicular to the surface of the GTV, across the lung-tumor boundary. From the simulated data, we can distinguish elastic from non-elastic tumor regression by comparing the Jacobian values samples between 5 and 12.5 mm inside and 5 and 12.5 mm outside the planning GTV. Finally, morphometric results were compared between tumors of different histologies. Results: Most patients (92.3%) in our cohort showed stable disease in the first week of treatment and non-elastic shrinkage in the later weeks of treatment. At week 2, 125 patients (88%) showed stable disease, three patients (2.1%) disease progression, and 11 patients (8%) regression. By treatment completion, 91 patients (64%) had stable disease, one patient (0.7%) progression and 46 patients (32%) regression. A slight difference in the mode of tumor change was observed between tumors of different histologies. Conclusion: Our novel approach shows that it may be possible to automatically quantify and identify global changes in lung cancer patients during RT,using routine CBCT images. Our results show that different regions of the tumor change in different ways. Therefore, careful consideration should be taken when adapting RT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.