We are interested here in the utilization of Genetic Algorithms (GA) as approximation methods for combinatorial optimization. They are stochastic methods using genetic operators on a population. For their design, two points must be worked : the general scheme of the algorithm with parameter adjustment and the design of chromosome contents and genetic operators. The first point poses globally no specific problem. The latter one involves difficulties when binary genes inside the chromosomes are replaced by more general information such as permutations. In this case, the performance of the genetic operators must be analyzed with respect to the considered specific problems and their specific criteria. As performance of mutation operators are analogous to those of neighborhood operators used in well known local search methods, we will focus here only on cross-over operator (COO) performances. The aims of this paper are first to design permutation cross-over performance indicators which express the probable trend of associated criterion variations, second to list literature proposed permutation cross-over operators and to propose some new ones with particular properties, third to present a numerical experiment which compares the different cross-over operators using the defined performance indicators. REsUME. Nous nous interessons ici a /'utilisation des Algorithmes Genitiques (AG) comme methodes approchees pour resoudre des problemes d'optimisation combinatoire. Ce sont des methodes stochastiques qui font progresser Ia qua/ire d'une population au moyen d'operateurs genetiques. Pour leur conception, il faut definir le schema general de l'algoritlune avec l'ajustement des parametres associes ainsi que le codage des chromosomes et les operateurs genetiques. La premiere partie n'est pas specifique au probleme considerl La deuxihne partie Revue des systemes de decision. Volume 5-n°1-2/1996 1 pages 157 ~ 177 Downloaded by [New York University] at 04:13 13 April 2015 158 Revue des systemes de decision. Vol. 5-no 1-2/1996 sou/eve des difficultes pour les problemes ou les chromosomes ne contiennent plus un codage binaire, mais un codage plus complexe comme par exemple des permutations. Dans ce cas, La performance des operateurs genetiques doit etre analysee en fonction du probleme a resoudre. Comme La performance des operateurs de mutation est analogue a La performance des operateurs de voisinage utilises dans des methodes bien connues d'amelioration par voisinage local, nous allons naus interesser ici uniquement a La performance des operateurs de croisement. Le but de ce papier est tout d'abord de concevoir des indicateurs de performance des operateurs de croisement qui donnent La tendance de variation probable de criteres associes, ensuite, de lister les operateurs de croisement de permutations presentes dans La litterature et d'en proposer quelques nouveaux presentant des proprietes particulieres, enfin, de presenter une serie d'experiences qui comparent les operateurs de croisement au moyen des indicateurs de performance de...
We consider here any scheduling problem in which the decisions to be made consist in choosing the direction of a set of disjunctive edges. To represent either any set of feasible solutions where some choices are already done on a sub-set of disjunctive edges or any feasible solution, we designed a ternary direct coding. This ternary coding may be integrated both into Branch and Bound approaches (BaB) and into Genetic Algorithm approaches (GA). We describe the genetic operators associated with this ternary direct coding. We then show how GA may be strongly integrated into a BaB algorithm using a single machine example l//CTi, where Emmons dominant properties may be incorporated using again the same ternary direct coding. The paper ends with some numerical examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.